Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

Overview

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe De Vleeschouwer ( https://github.com/trougnouf/Manypriors )

Forked from PyTorch implementation of "Variational image compression with a scale hyperprior" by Jiaheng Liu ( https://github.com/liujiaheng/compression )

This code is experimental.

Requirements

TODO torchac should be switched to the standalone release on https://github.com/fab-jul/torchac (which was not yet released at the time of writing this code)

Arch

pacaur -S python-tqdm python-pytorch-torchac python-configargparse python-yaml python-ptflops python-colorspacious python-pypng python-pytorch-piqa-git

Ubuntu / Slurm cluster / misc:

TMPDIR=tmp pip3 install --user torch==1.7.0+cu92 torchvision==0.8.1+cu92 -f https://download.pytorch.org/whl/torch_stable.html
TMPDIR=tmp pip3 install --user tqdm matplotlib tensorboardX scipy scikit-image scikit-video ConfigArgParse pyyaml h5py ptflops colorspacious pypng piqa

torchac must be compiled and installed per https://github.com/trougnouf/L3C-PyTorch/tree/master/src/torchac

torchac $ COMPILE_CUDA=auto python3 setup.py build
torchac $ python3 setup.py install --optimize=1 --skip-build

or (untested)

torchac $ pip install .

Once Ubuntu updates PyTorch then tensorboardX won't be required

Dataset gathering

Copy the kodak dataset into datasets/test/kodak

cd ../common
python tools/wikidownloader.py --category "Category:Featured pictures on Wikimedia Commons"
python tools/wikidownloader.py --category "Category:Formerly featured pictures on Wikimedia Commons"
python tools/wikidownloader.py --category "Category:Photographs taken on Ektachrome and Elite Chrome film"
mv "../../datasets/Category:Featured pictures on Wikimedia Commons" ../../datasets/FeaturedPictures
mv "../../datasets/Category:Formerly featured pictures on Wikimedia Commons" ../../datasets/Formerly_featured_pictures_on_Wikimedia_Commons
mv "../../datasets/Category:Photographs taken on Ektachrome and Elite Chrome film" ../../datasets/Photographs_taken_on_Ektachrome_and_Elite_Chrome_film
python tools/verify_images.py ../../datasets/FeaturedPictures/
python tools/verify_images.py ../../datasets/Formerly_featured_pictures_on_Wikimedia_Commons/
python tools/verify_images.py ../../datasets/Photographs_taken_on_Ektachrome_and_Elite_Chrome_film/

# TODO make a list of train/test img automatically s.t. images don't have to be copied over the network

Crop images to 1024*1024. from src/common: (in python)

import os
from libs import libdsops
for ads in ['Formerly_featured_pictures_on_Wikimedia_Commons', 'Photographs_taken_on_Ektachrome_and_Elite_Chrome_film', 'FeaturedPictures']:
    libdsops.split_traintest(ads)
    libdsops.crop_ds_dpath(ads, 1024, root_ds_dpath=os.path.join(libdsops.ROOT_DS_DPATH, 'train'), num_threads=os.cpu_count()//2)

#verify crops
python3 tools/verify_images.py ../../datasets/train/resized/1024/FeaturedPictures/
python3 tools/verify_images.py ../../datasets/train/resized/1024/Formerly_featured_pictures_on_Wikimedia_Commons/
python3 tools/verify_images.py ../../datasets/train/resized/1024/Photographs_taken_on_Ektachrome_and_Elite_Chrome_film/
# use the --save_img flag at the end of verify_images.py commands if training fails after the simple verification

Move a small subset of the training cropped images to a matching test directory and use it as args.val_dpath

JPEG/BPG compression of the Commons Test Images is done with common/tools/bpg_jpeg_compress_commons.py and comp/tools/bpg_jpeg_test_commons.py

Loading

Loading a model: provide all necessary (non-default) parameters s.a. arch, num_distributions, etc. Saved yaml can be used iff the ConfigArgParse patch from https://github.com/trougnouf/ConfigArgParse is applied, otherwise unset values are overwritten with the "None" string.

Training

Train a base model (given arch and num_distributions) for 6M steps at train_lambda=4096, fine-tune for 4M steps with lower train_lambda and/or msssim lossf Set arch to Manypriors for this work, use num_distributions 1 for Balle2017, or set arch to Balle2018PTTFExp for Balle2018 (hyperprior) egrun:

python train.py --num_distributions 64 --arch ManyPriors --train_lambda 4096 --expname mse_4096_manypriors_64_CLI
# and/or
python train.py --config configs/mse_4096_manypriors_64pr.yaml
# and/or
python train.py --config configs/mse_2048_manypriors_64pr.yaml --pretrain mse_4096_manypriors_64pr --reset_lr --reset_global_step # --reset_optimizer
# and/or
python train.py --config configs/mse_4096_hyperprior.yaml

--passthrough_ae is now activated by default. It was not used in the paper, but should result in better rate-distortion. To turn it off, change config/defaults.yaml or use --no_passthrough_ae

Tests

egruns: Test complexity:

python tests.py --complexity --pretrain mse_4096_manypriors_64pr --arch ManyPriors --num_distributions 64

Test timing:

python tests.py --timing "../../datasets/test/Commons_Test_Photographs" --pretrain mse_4096_manypriors_64pr --arch ManyPriors --num_distributions 64

Segment the images in commons_test_dpath by distribution index:

python tests.py --segmentation --commons_test_dpath "../../datasets/test/Commons_Test_Photographs" --pretrain mse_4096_manypriors_64pr --arch ManyPriors --num_distributions 64

Visualize cumulative distribution functions:

python tests.py --plot --pretrain mse_4096_manypriors_64pr --arch ManyPriors --num_distributions 64

Test on kodak images:

python tests.py --encdec_kodak --test_dpath "../../datasets/test/kodak/" --pretrain mse_4096_manypriors_64pr --arch ManyPriors --num_distributions 64

Test on commons images (larger, uses CPU):

python tests.py --encdec_commons --test_commons_dpath "../../datasets/test/Commons_Test_Photographs/" --pretrain checkpoints/mse_4096_manypriors_64pr/saved_models/checkpoint.pth --arch ManyPriors --num_distributions 64

Encode an image:

python tests.py --encode "../../datasets/test/Commons_Test_Photographs/Garden_snail_moving_down_the_Vennbahn_in_disputed_territory_(DSCF5879).png" --pretrain mse_4096_manypriors_64pr --arch ManyPriors --num_distributions 64 --device -1

Decode that image:

python tests.py --decode "checkpoints/mse_4096_manypriors_64pr/encoded/Garden_snail_moving_down_the_Vennbahn_in_disputed_territory_(DSCF5879).png" --pretrain mse_4096_manypriors_64pr --arch ManyPriors --num_distributions 64 --device -1
Owner
Benoit Brummer
BS CpE at @UCF (2016), MS CS (AI) @uclouvain (2019), PhD student @uclouvain w/ intoPIX
Benoit Brummer
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
Anti-UAV base on PaddleDetection

Paddle-Anti-UAV Anti-UAV base on PaddleDetection Background UAVs are very popular and we can see them in many public spaces, such as parks and playgro

Qingzhong Wang 2 Apr 20, 2022
This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution Network.

Lite-HRNet: A Lightweight High-Resolution Network Introduction This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution

HRNet 675 Dec 25, 2022
Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces. User Guide archABM is a fast and open source agent-

Vicomtech 10 Dec 05, 2022
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 06, 2023
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022
Gluon CV Toolkit

Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in

Distributed (Deep) Machine Learning Community 5.4k Jan 06, 2023
Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"

Topographic Variational Autoencoder Paper: https://arxiv.org/abs/2109.01394 Getting Started Install requirements with Anaconda: conda env create -f en

T. Andy Keller 69 Dec 12, 2022
113 Nov 28, 2022
LaBERT - A length-controllable and non-autoregressive image captioning model.

Length-Controllable Image Captioning (ECCV2020) This repo provides the implemetation of the paper Length-Controllable Image Captioning. Install conda

bearcatt 53 Nov 13, 2022
Patch-Diffusion Code (AAAI2022)

Patch-Diffusion This is an official PyTorch implementation of "Patch Diffusion: A General Module for Face Manipulation Detection" in AAAI2022. Require

H 7 Nov 02, 2022
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

Yutong Zhang 1 Mar 01, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
Music Generation using Neural Networks Streamlit App

Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i

Muhammad Sohaib Arshid 6 Aug 09, 2022
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022
These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations"

Few-shot-NLEs These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations". You can find the smal

Yordan Yordanov 0 Oct 21, 2022
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

Jason Antic 15.8k Jan 04, 2023