A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION

Related tags

Deep LearningCFN-SR
Overview

CFN-SR

A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION

The audio-video based multimodal emotion recognition has attracted a lot of attention due to its robust performance. Most of the existing methods focus on proposing different cross-modal fusion strategies. However, these strategies introduce redundancy in the features of different modalities without fully considering the complementary properties between modal information, and these approaches do not guarantee the non-loss of original semantic information during intra- and inter-modal interactions. In this paper, we propose a novel cross-modal fusion network based on self-attention and residual structure (CFN-SR) for multimodal emotion recognition. Firstly, we perform representation learning for audio and video modalities to obtain the semantic features of the two modalities by efficient ResNeXt and 1D CNN, respectively. Secondly, we feed the features of the two modalities into the cross-modal blocks separately to ensure efficient complementarity and completeness of information through the self-attention mechanism and residual structure. Finally, we obtain the output of emotions by splicing the obtained fused representation with the original representation. To verify the effectiveness of the proposed method, we conduct experiments on the RAVDESS dataset. The experimental results show that the proposed CFN-SR achieves the state-of-the-art and obtains 75.76% accuracy with 26.30M parameters.

image-20211007154526694

Setup

Install dependencies

pip install opencv-python moviepy librosa sklearn

Download the RAVDESS dataset using the bash script

bash scripts/download_ravdess.sh <path/to/RAVDESS>

Or download the files manually

and follow the folder structure below and have .csv files in landmarks/ (do not modify file names)

RAVDESS/
    landmarks/
        .csv landmark files
    Actor_01/
    ...
    Actor_24/

Preprocess the dataset using the following

python dataset_prep.py --datadir <path/to/RAVDESS>

Generated folder structure (do not modify file names)

RAVDESS/
    landmarks/
        .csv landmark files
    Actor_01/
    ...
    Actor_24/
    preprocessed/
        Actor_01/
        ...
        Actor_24/
            01-01-01-01-01-01-24.mp4/
                frames/
                    .jpg frames
                audios/
                    .wav raw audio
                    .npy MFCC features
            ...

Download checkpoints folder from Google Drive. The following script downloads all pretrained models (unimodal and MSAF) for all 6 folds.

bash scripts/download_checkpoints.sh

Train

python main_msaf.py --datadir <path/to/RAVDESS/preprocessed> --checkpointdir checkpoints --train

All parameters

usage: main_msaf.py [-h] [--datadir DATADIR] [--k_fold K_FOLD] [--lr LR]
                    [--batch_size BATCH_SIZE] [--num_workers NUM_WORKERS]
                    [--epochs EPOCHS] [--checkpointdir CHECKPOINTDIR] [--no_verbose]
                    [--log_interval LOG_INTERVAL] [--no_save] [--train]

Result

Model Fusion Stage Accuracy #Params
Averaging Late 68.82 25.92M
Multiplicative Late 70.35 25.92M
Multiplication Late 70.56 25.92M
Concat + FC Early 71.04 26.87M
MCBP Early 71.32 51.03M
MMTM Model 73.12 31.97M
MSAF Model 74.86 25.94M
ERANNs Model 74.80
CFN-SR(Ours) Model 75.76 26.30M

Reference

  • Note that some codes references MSAF
Owner
skeleton
skeleton
Hide screen when boss is approaching.

BossSensor Hide your screen when your boss is approaching. Demo The boss stands up. He is approaching. When he is approaching, the program fetches fac

Hiroki Nakayama 6.2k Jan 07, 2023
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
Source code for From Stars to Subgraphs

GNNAsKernel Official code for From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness Visualizations GNN-AK(+) GNN-AK(+) with Subgra

44 Dec 19, 2022
Human Pose estimation with TensorFlow framework

Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and

Eldar Insafutdinov 1.1k Dec 29, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
Event-forecasting - Event Forecasting Algorithms With Python

event-forecasting Event Forecasting Algorithms Theory Correlating events in comp

Intellia ICT 4 Feb 15, 2022
In this project, we create and implement a deep learning library from scratch.

ARA In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The

22 Aug 23, 2022
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Ethan 51 Nov 17, 2022
Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification"

hypergraph_reid Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification" If you find this help your research,

62 Dec 21, 2022
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022
A crossplatform menu bar application using mpv as DLNA Media Renderer.

Macast Chinese README A menu bar application using mpv as DLNA Media Renderer. Install MacOS || Windows || Debian Download link: Macast release latest

4.4k Jan 01, 2023
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022