constructing maps of intellectual influence from publication data

Overview

Influencemap Project @ ANU

Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of applications like google scholar and the various metrics created for ranking papers, authors, conferences, etc.

We aim to provide a visualisation tool which allows users to easily search and visualise the flow of academic influence. Our visualisation maps influence in the form of an influence flower. We calculate influence as a function of the number of citations between two entities (look below for information on our definition of influence).

The node in the centre of the flower denotes the ego entity, the entitiy in which we are looking at influence with respect to. The leaf nodes are the most influential entities with respect to the ego. (We define the ego as a collection of papers. If it is an author, it is the collection of papers that the author has authored)

Each of the edges of the graph signifies the flow of influence to and from the ego node, the strength of this relation is reflected in the thickness of the edge. The red edges denote the influence the ego has towards the outer entities (an outer entity citing a paper by the ego). The blue edges denote the influence the outer entities have towards the ego (the ego cites a paper by one of the outer entities).

The colour of the outer nodes signifies the ratio of influence in and out. A blue node indicates that the associated entity has influenced the ego more than the ego has influenced itself. Likewise, a red node indicates the ego has influenced the node's entity more than it has influenced the ego.

We define two entities to be coauthors if the entities have contributed to the same paper. Coauthors of the ego are signified by nodes with greyed out names.

Data

We use the microsoft academic graph (MAG) dataset for our visualisation. The dataset is a large curation of publication indexed by Bing. From MAG, we use the following fields of the paper entries in the dataset,

  • Citation links
  • Authors
  • Conferences
  • Journals
  • Author Affiliations

Influence

To quantify academic influence, we define influence as a function of paper citations. Each citation which the ego is apart of contributes to the overall influence map of an ego. To prevent papers with a large number of entities contributing from creating an overwhelming amount of influence, we normalise the influence contribution by the number of entities in the cited paper.

For example, consider the following four paper database where we only consider entities which are authors.

Name Paper no. authors cites papers
John Smith Algorithms 2 [Linear Algebra]
John Smith Machine Learning 3 [Linear Algebra, Computation]
Maria Garcia Linear Algebra 2 None
Maria Garcia Computation 4 [Algorithms]

In this case John's influence on Maria is 0.5 (John's paper Algorithm's has a weight of 0.5 and was cited once by Maria).

On the other hand Maria's influence on John is 1.25 (Linear Algebra has a weight of 0.5 and it was cited twice by John, Computation has a weight of 0.25 and was cited once by John).

We aggregate the pairwise influence of entities associated with the papers of the ego to generate the nodes of a flower. Each flowers' outer nodes can be a collection of several types of entities. In our influence flower application, we present 4 different flower types:

  1. Author outer nodes
  2. Venue (conferences or journals) outer nodes
  3. Author Affiliation outer nodes
  4. Paper topic outer nodes

Filtering self-citations

We define a self-citation between papers and a cited paper as a relation dependent on the ego. A paper citation is a self-citation if both papers have the ego as an author (a venue, an institution, or a topic).

Filtering co-contributors

The Influence Flower is able to capture less obvious influence outside of one’s co-author networks with the filtering. We define two entities to be co-contributors if the entities have contributed to the same paper. For the venue type entity, co-contribution indicates if the ego has published a paper to the venue. For the topic type entity, it means that the ego has written a paper of the topic. Co-contributors of the ego are indicated by nodes with greyed out names.

Other candidate definitions of influence

We have described influence as the sum of citations from one person (or venue or affiliation) to another, weighted by the number of authors in the cited paper. Similar methods were considered early on in the project which included combinations of different weighting schemes. We looked at the eight combinations of three mutually exclusive weightings:

  1. Weighting by the number of authors on the citing paper;
  2. Weighting by the number of authors on the cited paper; and
  3. Weighting by the number of papers referenced by the citing paper.

Due to the lack of a ground truth value of influence to compare these definitions to, we evaluated the eight combinations of these weightings empirically by discussing with researchers which of the definitions produced flowers that most accurately reflected their opinions of who they have influenced and been influenced by.

Other definitions of influence which have not yet been explored with this data include existing measures for node centrality in graphs. By using citation data from MAG to define a directed graph where nodes represent authors, venues or affiliations, and edges are derived from citations between nodes, we could explore using metrics such as closeness, betweenness and eigenvector centrality. These metrics are more appropriate for defining the influence of an entity relative to the whole network.

Owner
CS Metrics
CS Metrics
Rohit Ingole 2 Mar 24, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

Jia Research Lab 137 Dec 14, 2022
Neural Network Libraries

Neural Network Libraries Neural Network Libraries is a deep learning framework that is intended to be used for research, development and production. W

Sony 2.6k Dec 30, 2022
A curated list of the latest breakthroughs in AI (in 2021) by release date with a clear video explanation, link to a more in-depth article, and code.

2021: A Year Full of Amazing AI papers- A Review 📌 A curated list of the latest breakthroughs in AI by release date with a clear video explanation, l

Louis-François Bouchard 2.9k Dec 31, 2022
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

Yazhou XING 90 Oct 19, 2022
This repository contains a pytorch implementation of "StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision".

StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision | Project Page | Paper | This repository contains a pytorch implementation of "St

87 Dec 09, 2022
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woźnicki 17 Aug 04, 2022
GoodNews Everyone! Context driven entity aware captioning for news images

This is the code for a CVPR 2019 paper, called GoodNews Everyone! Context driven entity aware captioning for news images. Enjoy! Model preview: Huge T

117 Dec 19, 2022
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
QilingLab challenge writeup

qiling lab writeup shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。 前情提要 Qiling 是一款功能強大的模擬框架,和 qemu user mode

Yuan 17 Nov 17, 2022
Coursera - Quiz & Assignment of Coursera

Coursera Assignments This repository is aimed to help Coursera learners who have difficulties in their learning process. The quiz and programming home

浅梦 828 Jan 04, 2023
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Pavel Izmailov 25 Sep 21, 2022
PyTorch implementation of spectral graph ConvNets, NIPS’16

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
Share a benchmark that can easily apply reinforcement learning in Job-shop-scheduling

Gymjsp Gymjsp is an open source Python library, which uses the OpenAI Gym interface for easily instantiating and interacting with RL environments, and

134 Dec 08, 2022
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Aspuru-Guzik group repo 55 Nov 29, 2022
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022