8-week curriculum for AI Builders

Overview

curriculum

8-week curriculum for AI Builders

สารบัญ

Week 1 - บทที่ 1 - Machine Learning คืออะไร

ในบทเรียนนี้เราจะเรียนรู้ว่า Artificial Intelligence (AI), Machine Learning (ML) และ Deep Learning (DL) คืออะไร เหมือนกันหรือแตกต่างกันอย่างไร เราจะเรียนรู้ส่วนประกอบของระบบ machine learning และวิธีการเทรน machine learning model ด้วยตัวอย่างจำแนกรูปภาพอาหารไทย 48 ชนิดจากชุดข้อมูล FoodyDudy หลังจากนั้นเราจะเห็นว่าส่วนประกอบและวิธีการเทรนนี้ถูกใช้กับข้อมูลชนิดอื่นๆ เช่น ข้อความ (texts) และตาราง (tabular data) ได้อย่างไรบ้าง

บทเรียนนี้ปรับแต่งและเพิ่มเติมจาก fastai Practical Deep Learning for Coders v4 part1 - Lesson 1 เพื่อให้เหมาะกับโครงการ AI Builders

Video: YouTube

Notebooks: All Parts

Week 2 - บทที่ 2 - ชุดข้อมูลมหัศจรรย์และถิ่นที่อยู่

ในปัจจุบันชุดข้อมูลที่มีพร้อมทั้งปริมาณและคุณภาพเป็นส่วนสำคัญในการสร้าง ML models ในบทเรียนนี้เราจะเรียนรู้วิธีการหาข้อมูลมาเทรนโมเดลของเราทั้งจากชุดข้อมูล open data, web scraping, หรือสร้างขึ้นมาเองจากโมเดลและโค้ด open source ทั้งนี้การหาข้อมูลมาเทรนโมเดลจากแหล่งข้อมูลสาธารณะที่กล่าวมานั้นเราต้องให้ความสำคัญเรื่องลิขสิทธิ์และจริยธรรม (แม้แต่โมเดลเองก็สร้างข้อมูลที่ผิดลิขสิทธิ์-จริยธรรมได้; เรียนเพิ่มเติมในบทที่ 7)

Video: YouTube

Notebooks: All Parts

Week 3 - บทที่ 3 - Stochastic Gradient Descent ตั้งแต่เริ่มต้น

ในบทเรียนนี้ เราจะทำการสร้างวิธีที่โมเดลของเราเรียนรู้ในบทเรียนที่แล้วๆมา เรียกว่า stochastic gradient descent ขึ้นมาเองตั้งแต่ต้นโดยใช้เพียงแค่ Pytorch สำหรับ linear algebra และการทำ partial derivatives เท่านั้น ด้วยตัวอย่างการจำแนกรูปภาพตัวเลข 3 และ 7 ออกจากกัน

บทเรียนแปล-สรุปมาจาก 04_mnist_basics.ipynb ของ fastai ผู้ที่สนใจสามารถไปติดตามบทเรียนต้นทางได้ที่ course.fast.ai

Video: YouTube

Notebooks: All Parts

Track - Vision

Week 4 - 4v Image Classification

ในบทเรียนนี้เราจะมาลองสร้างโมเดล Image classification เพื่อแยกพันธุ์ของน้องหมาโดยใช้เทคนิค Transfer learning ด้วยไลบรารี่ต่างๆ ได้แก่ FastAI, Pytorch และ Pytorch Lightning นอกจากนั้นเราจะมาดูองค์ประกอบของการใช้ Pytorch และการใช้ Image augmentation ด้วยไลบรารี่ torchvision

Video: Part 1, Part 2, Part 3, Part 4

Slides (หน้า 1-33): Google slide, pdf

Notebooks: Part 1, Part 2

Week 5 - 5v Object Detection

ในบทเรียนนี้เราจะลองสร้างโมเดล Object detection ด้วยเทคนิค Transfer learning โดยใช้ไลบรารี่ FastAI และ Pytorch กัน เราจะมาดูหน้าตาของการสร้างชุดข้อมูล Object detection และไปดูเครื่องมือต่างๆที่ใช้สร้างชุดข้อมูล Object detection

Video: Part 1, Part 2, Part 3

Slides (หน้า 34-44): Google slide, pdf

Notebooks: Object Detection, Semantic Segmentation

Week 6 - 6v GANs and Advanced Topics

TBA ในสัปดาห์นี้เราจะมาดูการใช้ Deep learning กับ tasks ต่างๆเช่น sequence recognition และ GAN กัน

Video: [TBA]

Slides (หน้า 45-48): Google slide, pdf

Notebooks: [TBA]

Track - Texts

Week 4 - บทที่ 4n - NLP คืออะไร? บทเรียนจากอดีตสู่ปัจจุบัน

ในบทนี้เราจะเรียนเกี่ยวกับ NLP ตั้งแต่พื้นฐาน ไปจนถึง NLP ในยุคปัจจุบันว่ามีการพัฒนาไปอย่างไรบ้าง พร้อมทั้งยกตัวอย่างการทำ text classification (การจำแนกข้อความ) ด้วยวิธีตั้งแต่อดีตยันปัจจุบัน

Video: YouTube

Slides: Google Slides, pdf

Notebooks: All Parts

Week 5 - บทที่ 5n - การเทรนโมเดลบน Hugging Face พาร์ท 1

ในปัจจุบันการทำงานด้าน NLP มักจะนิยมใช้งาน Deep Learning ในการแก้ปัญหาโจทย์ที่มีความซับซ้อนสูง โดย Library ที่เป็นที่นิยมในปัจจุบันคือ Hugging Face (transformers, datasets, tokenizers) โดยในบทเรียนนี้เราจะมาเรียนการใช้งาน Hugging Face เพื่อเทรนโมเดลในงานด้าน NLP!

Video: YouTube

Slides: Google Slides, pdf

Notebooks: Part 1, Part 2, Part 3

Week 6 - บทที่ 6n - การเทรนโมเดลบน Hugging Face พาร์ท 2

หลังจากที่เราได้เรียนรู้พื้นฐานของการใช้งาน Hugging Face แล้ว เราจะมาเทรนโมเดลเพื่องานที่ซับซ้อนมากขึ้น เช่น Machine Translation (เครื่องแปลภาษา), Question Answering (ระบบถาม-ตอบ) และ Sentence Representation (การแปลงข้อความให้เป็นข้อมูล)

Video: YouTube

Slides: Google Slides, pdf

Notebooks: Part 1, Part 2, Part 3

Track - Tabular Data

Week 4 - บทที่ 4t - Introduction to Tabular Data, Correlation and Regression

การสร้างสมการความสัมพันธ์ (correlation) เพื่อทำนายตัวแปรประเภทตัวเลข (numerical) เพื่อนำไปใช้ในการหาความสัมพันธ์หรือพยากรณ์ เช่น การหาความสัมพันธ์ระหว่างตัวแปรที่มีผลต่อยอดขาย หรือ ทำนายพยากรณ์ยอดขายในอนาคต

Video: Part 1, Part 2, Part 3

Notebooks: Part 1, Part 2, Part 3

Week 5 - บทที่ 5t - Classification

การสร้างสมการความสัมพันธ์ เพื่อทำนายตัวแปรประเภทกลุ่ม/ชนิด (categorical) เพื่อใช้ในการทำนายหรือเลือกทางเลือก เช่น ทำนายว่าลูกค้าคนไหนจะหยุดใช้บริการ ทำนายว่าลูกค้าคนไหน เมื่อส่งคูปองไปแล้วจะใช้ หรือ ทำนายว่าเครื่องจักรจะเสียหรือไม่

Video: Part 1, Part 2

Notebooks: Part 1, Part 2

Week 6 - บทที่ 6t - Similarity, Recommendation and Clustering

การวิเคราะห์ความคลายคลึงและการแบ่งกลุ่มข้อมูล เพื่อนำไปใช้ในการแนะนำสินค้าหรือเนื้อหาที่ลูกค้าสนใจ เช่น Shopee แนะนำสินค้าที่เราสนใจ หรือ spotify แนะนำเพลงที่ผู้ฟังน่าจะอยากฟังต่อไป รวมถึงการนำข้อมูลมาใช้ในการแบ่งกลุ่มลูกค้าที่มีความสนใจเหมือนกันสำหรับนำไปทำการตลาดเฉพาะกลุ่ม

Video: YouTube

Notebooks: TBA

Week 7 - บทที่ 7 - จริยธรรมปัญญาประดิษฐ์

เมื่อปัญญาประดิษฐ์เข้ามามีบทบาทในชีวิตประจำวัน รวมถึงใช้ในการทำงานสาขาต่างๆ อาทิ ช่วยตรวจโรค ช่วยตรวจจับผู้กระทำผิด หรือช่วยตัดสินค่าตอบแทน/บทลงโทษ ฯลฯ จะเห็นได้ว่าปัญญาประดิษฐ์เกี่ยวข้องกับประเด็นทางสังคมและส่งผลกระทบต่อคนเป็นจำนวนมาก บางครั้งปัญญาประดิษฐ์มีการตัดสินใจที่ผิดพลาด ส่งผลกระทบกับชีวิตของคน หลายครั้งปัญญาประดิษฐ์เป็นส่วนหนึ่งของการเผยแพร่อคติโดยที่ผู้พัฒนาคาดไม่ถึง หรือบางกรณีเป็นการจงใจนำปัญญาประดิษฐ์ไปใช้เพื่อการทำร้ายผู้อื่น การพัฒนาปัญญาประดิษฐ์จึงต้องคำนึงถึงหลักจริยธรรมปัญญาประดิษฐ์หรือ AI Ethics ในการพัฒนาเทคโนโลยีอย่างมีความรับผิดชอบ ในสัปดาห์นี้ เราจะมาทำความเข้าใจว่าปัญญาประดิษฐ์ก็สามารถมีอคติในการรับและเผยแพร่ข้อมูลได้อย่างไร รวมถึงคำนึงถึงโอกาสที่เทคโนโลยีจะถูกนำไปใช้ในทางที่ผิดและเราจะหาทางป้องกันความเสี่ยงได้อย่างไร

บทเรียนนี้แปลเป็นภาษาไทยและเพิ่มเติมเนื้อหาจาก Lesson 5 ของ fastai Practical Deep Learning for Coders v4 part1 โดย Rachel Thomas

Video: YouTube

Slides: pdf

Week 8 - บทที่ 8 - Prototype Deployment

ในบทเรียนนี้จะแนะนำวิธีการ Deploy โปรเจค ML / AI โดยจะนำ source code ที่เขียนไว้ใน notebook มาสร้างเป็นโปรเจค Streamlit, เรียนรู้ widget ต่างๆของ Streamlit เพื่อใช้ทำ Visualization ไม่ว่าจะเป็นการนำผลลัพธ์จากการรันโมเดลมาพล็อตเป็นกราฟ ตาราง แสดงรูปภาพที่เกี่ยวข้อง และอื่นๆ รวมโค้ดทั้งหมดออกเป็นเป็นโปรเจค จากนั้น Deploy โปรเจคไปยัง Heroku, Streamlit Cloud หรือ Cloud Server อื่นๆ เช่น DigitalOcean / AWS / Google Cloud / Azure

กิตติกรรมประกาศ - Acknowledgements

ส่วนหนึ่งของบทเรียนของ AI Builders ทำการดัดแปลง-แก้ไข-ต่อเติมจาก fastai Practical Deep Learning for Coders v4 part1 ตามลิขสิทธิ์ GNU General Public License v3.0 เพื่อให้เหมาะแก่นักเรียนผู้ใช้ภาษาไทยเป็นภาษาแรก ได้แก่ บทที่ 1 และ 2 (ปรับแต่งจาก Lesson 1 พร้อมเพิ่มเติมเนื้อหา), 3 (ปรับแต่งจาก Lesson 3 และ Lesson 4) และ 7 (แปลเป็นภาษาไทยและเพิ่มเติมเนื้อหาจาก Lesson 5)

We adapted and augmented some lessons from fastai Practical Deep Learning for Coders v4 part1 for our curriculum to suit our students whose first language is Thai, namely Lesson 1 and 2 (adapted from Lesson 1; augmented our original contents), Lesson 3 (adapted from Lesson 3 and Lesson 4), Lesson 7 (translated from Lesson 5 and added localized examples).

You might also like...
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

Releases(slides_prototype_deployment)
Owner
AI Builders
a program for kids who want to build good AI
AI Builders
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
A curated list of the latest breakthroughs in AI (in 2021) by release date with a clear video explanation, link to a more in-depth article, and code.

2021: A Year Full of Amazing AI papers- A Review 📌 A curated list of the latest breakthroughs in AI by release date with a clear video explanation, l

Louis-François Bouchard 2.9k Dec 31, 2022
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger

Harpreet Virk 11 Nov 20, 2022
LWCC: A LightWeight Crowd Counting library for Python that includes several pretrained state-of-the-art models.

LWCC: A LightWeight Crowd Counting library for Python LWCC is a lightweight crowd counting framework for Python. It wraps four state-of-the-art models

Matija Teršek 39 Dec 28, 2022
Wordplay, an artificial Intelligence based crossword puzzle solver.

Wordplay, AI based crossword puzzle solver A crossword is a word puzzle that usually takes the form of a square or a rectangular grid of white- and bl

Vaibhaw 4 Nov 16, 2022
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more

Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame

1.4k Jan 07, 2023
Reproduced Code for Image Forgery Detection papers.

Image Forgery Detection With over 4.5 billion active internet users, the amount of multimedia content being shared every day has surpassed everyone’s

Umar Masud 15 Dec 06, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

536 Dec 20, 2022
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 98 Dec 21, 2022
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023