8-week curriculum for AI Builders

Overview

curriculum

8-week curriculum for AI Builders

สารบัญ

Week 1 - บทที่ 1 - Machine Learning คืออะไร

ในบทเรียนนี้เราจะเรียนรู้ว่า Artificial Intelligence (AI), Machine Learning (ML) และ Deep Learning (DL) คืออะไร เหมือนกันหรือแตกต่างกันอย่างไร เราจะเรียนรู้ส่วนประกอบของระบบ machine learning และวิธีการเทรน machine learning model ด้วยตัวอย่างจำแนกรูปภาพอาหารไทย 48 ชนิดจากชุดข้อมูล FoodyDudy หลังจากนั้นเราจะเห็นว่าส่วนประกอบและวิธีการเทรนนี้ถูกใช้กับข้อมูลชนิดอื่นๆ เช่น ข้อความ (texts) และตาราง (tabular data) ได้อย่างไรบ้าง

บทเรียนนี้ปรับแต่งและเพิ่มเติมจาก fastai Practical Deep Learning for Coders v4 part1 - Lesson 1 เพื่อให้เหมาะกับโครงการ AI Builders

Video: YouTube

Notebooks: All Parts

Week 2 - บทที่ 2 - ชุดข้อมูลมหัศจรรย์และถิ่นที่อยู่

ในปัจจุบันชุดข้อมูลที่มีพร้อมทั้งปริมาณและคุณภาพเป็นส่วนสำคัญในการสร้าง ML models ในบทเรียนนี้เราจะเรียนรู้วิธีการหาข้อมูลมาเทรนโมเดลของเราทั้งจากชุดข้อมูล open data, web scraping, หรือสร้างขึ้นมาเองจากโมเดลและโค้ด open source ทั้งนี้การหาข้อมูลมาเทรนโมเดลจากแหล่งข้อมูลสาธารณะที่กล่าวมานั้นเราต้องให้ความสำคัญเรื่องลิขสิทธิ์และจริยธรรม (แม้แต่โมเดลเองก็สร้างข้อมูลที่ผิดลิขสิทธิ์-จริยธรรมได้; เรียนเพิ่มเติมในบทที่ 7)

Video: YouTube

Notebooks: All Parts

Week 3 - บทที่ 3 - Stochastic Gradient Descent ตั้งแต่เริ่มต้น

ในบทเรียนนี้ เราจะทำการสร้างวิธีที่โมเดลของเราเรียนรู้ในบทเรียนที่แล้วๆมา เรียกว่า stochastic gradient descent ขึ้นมาเองตั้งแต่ต้นโดยใช้เพียงแค่ Pytorch สำหรับ linear algebra และการทำ partial derivatives เท่านั้น ด้วยตัวอย่างการจำแนกรูปภาพตัวเลข 3 และ 7 ออกจากกัน

บทเรียนแปล-สรุปมาจาก 04_mnist_basics.ipynb ของ fastai ผู้ที่สนใจสามารถไปติดตามบทเรียนต้นทางได้ที่ course.fast.ai

Video: YouTube

Notebooks: All Parts

Track - Vision

Week 4 - 4v Image Classification

ในบทเรียนนี้เราจะมาลองสร้างโมเดล Image classification เพื่อแยกพันธุ์ของน้องหมาโดยใช้เทคนิค Transfer learning ด้วยไลบรารี่ต่างๆ ได้แก่ FastAI, Pytorch และ Pytorch Lightning นอกจากนั้นเราจะมาดูองค์ประกอบของการใช้ Pytorch และการใช้ Image augmentation ด้วยไลบรารี่ torchvision

Video: Part 1, Part 2, Part 3, Part 4

Slides (หน้า 1-33): Google slide, pdf

Notebooks: Part 1, Part 2

Week 5 - 5v Object Detection

ในบทเรียนนี้เราจะลองสร้างโมเดล Object detection ด้วยเทคนิค Transfer learning โดยใช้ไลบรารี่ FastAI และ Pytorch กัน เราจะมาดูหน้าตาของการสร้างชุดข้อมูล Object detection และไปดูเครื่องมือต่างๆที่ใช้สร้างชุดข้อมูล Object detection

Video: Part 1, Part 2, Part 3

Slides (หน้า 34-44): Google slide, pdf

Notebooks: Object Detection, Semantic Segmentation

Week 6 - 6v GANs and Advanced Topics

TBA ในสัปดาห์นี้เราจะมาดูการใช้ Deep learning กับ tasks ต่างๆเช่น sequence recognition และ GAN กัน

Video: [TBA]

Slides (หน้า 45-48): Google slide, pdf

Notebooks: [TBA]

Track - Texts

Week 4 - บทที่ 4n - NLP คืออะไร? บทเรียนจากอดีตสู่ปัจจุบัน

ในบทนี้เราจะเรียนเกี่ยวกับ NLP ตั้งแต่พื้นฐาน ไปจนถึง NLP ในยุคปัจจุบันว่ามีการพัฒนาไปอย่างไรบ้าง พร้อมทั้งยกตัวอย่างการทำ text classification (การจำแนกข้อความ) ด้วยวิธีตั้งแต่อดีตยันปัจจุบัน

Video: YouTube

Slides: Google Slides, pdf

Notebooks: All Parts

Week 5 - บทที่ 5n - การเทรนโมเดลบน Hugging Face พาร์ท 1

ในปัจจุบันการทำงานด้าน NLP มักจะนิยมใช้งาน Deep Learning ในการแก้ปัญหาโจทย์ที่มีความซับซ้อนสูง โดย Library ที่เป็นที่นิยมในปัจจุบันคือ Hugging Face (transformers, datasets, tokenizers) โดยในบทเรียนนี้เราจะมาเรียนการใช้งาน Hugging Face เพื่อเทรนโมเดลในงานด้าน NLP!

Video: YouTube

Slides: Google Slides, pdf

Notebooks: Part 1, Part 2, Part 3

Week 6 - บทที่ 6n - การเทรนโมเดลบน Hugging Face พาร์ท 2

หลังจากที่เราได้เรียนรู้พื้นฐานของการใช้งาน Hugging Face แล้ว เราจะมาเทรนโมเดลเพื่องานที่ซับซ้อนมากขึ้น เช่น Machine Translation (เครื่องแปลภาษา), Question Answering (ระบบถาม-ตอบ) และ Sentence Representation (การแปลงข้อความให้เป็นข้อมูล)

Video: YouTube

Slides: Google Slides, pdf

Notebooks: Part 1, Part 2, Part 3

Track - Tabular Data

Week 4 - บทที่ 4t - Introduction to Tabular Data, Correlation and Regression

การสร้างสมการความสัมพันธ์ (correlation) เพื่อทำนายตัวแปรประเภทตัวเลข (numerical) เพื่อนำไปใช้ในการหาความสัมพันธ์หรือพยากรณ์ เช่น การหาความสัมพันธ์ระหว่างตัวแปรที่มีผลต่อยอดขาย หรือ ทำนายพยากรณ์ยอดขายในอนาคต

Video: Part 1, Part 2, Part 3

Notebooks: Part 1, Part 2, Part 3

Week 5 - บทที่ 5t - Classification

การสร้างสมการความสัมพันธ์ เพื่อทำนายตัวแปรประเภทกลุ่ม/ชนิด (categorical) เพื่อใช้ในการทำนายหรือเลือกทางเลือก เช่น ทำนายว่าลูกค้าคนไหนจะหยุดใช้บริการ ทำนายว่าลูกค้าคนไหน เมื่อส่งคูปองไปแล้วจะใช้ หรือ ทำนายว่าเครื่องจักรจะเสียหรือไม่

Video: Part 1, Part 2

Notebooks: Part 1, Part 2

Week 6 - บทที่ 6t - Similarity, Recommendation and Clustering

การวิเคราะห์ความคลายคลึงและการแบ่งกลุ่มข้อมูล เพื่อนำไปใช้ในการแนะนำสินค้าหรือเนื้อหาที่ลูกค้าสนใจ เช่น Shopee แนะนำสินค้าที่เราสนใจ หรือ spotify แนะนำเพลงที่ผู้ฟังน่าจะอยากฟังต่อไป รวมถึงการนำข้อมูลมาใช้ในการแบ่งกลุ่มลูกค้าที่มีความสนใจเหมือนกันสำหรับนำไปทำการตลาดเฉพาะกลุ่ม

Video: YouTube

Notebooks: TBA

Week 7 - บทที่ 7 - จริยธรรมปัญญาประดิษฐ์

เมื่อปัญญาประดิษฐ์เข้ามามีบทบาทในชีวิตประจำวัน รวมถึงใช้ในการทำงานสาขาต่างๆ อาทิ ช่วยตรวจโรค ช่วยตรวจจับผู้กระทำผิด หรือช่วยตัดสินค่าตอบแทน/บทลงโทษ ฯลฯ จะเห็นได้ว่าปัญญาประดิษฐ์เกี่ยวข้องกับประเด็นทางสังคมและส่งผลกระทบต่อคนเป็นจำนวนมาก บางครั้งปัญญาประดิษฐ์มีการตัดสินใจที่ผิดพลาด ส่งผลกระทบกับชีวิตของคน หลายครั้งปัญญาประดิษฐ์เป็นส่วนหนึ่งของการเผยแพร่อคติโดยที่ผู้พัฒนาคาดไม่ถึง หรือบางกรณีเป็นการจงใจนำปัญญาประดิษฐ์ไปใช้เพื่อการทำร้ายผู้อื่น การพัฒนาปัญญาประดิษฐ์จึงต้องคำนึงถึงหลักจริยธรรมปัญญาประดิษฐ์หรือ AI Ethics ในการพัฒนาเทคโนโลยีอย่างมีความรับผิดชอบ ในสัปดาห์นี้ เราจะมาทำความเข้าใจว่าปัญญาประดิษฐ์ก็สามารถมีอคติในการรับและเผยแพร่ข้อมูลได้อย่างไร รวมถึงคำนึงถึงโอกาสที่เทคโนโลยีจะถูกนำไปใช้ในทางที่ผิดและเราจะหาทางป้องกันความเสี่ยงได้อย่างไร

บทเรียนนี้แปลเป็นภาษาไทยและเพิ่มเติมเนื้อหาจาก Lesson 5 ของ fastai Practical Deep Learning for Coders v4 part1 โดย Rachel Thomas

Video: YouTube

Slides: pdf

Week 8 - บทที่ 8 - Prototype Deployment

ในบทเรียนนี้จะแนะนำวิธีการ Deploy โปรเจค ML / AI โดยจะนำ source code ที่เขียนไว้ใน notebook มาสร้างเป็นโปรเจค Streamlit, เรียนรู้ widget ต่างๆของ Streamlit เพื่อใช้ทำ Visualization ไม่ว่าจะเป็นการนำผลลัพธ์จากการรันโมเดลมาพล็อตเป็นกราฟ ตาราง แสดงรูปภาพที่เกี่ยวข้อง และอื่นๆ รวมโค้ดทั้งหมดออกเป็นเป็นโปรเจค จากนั้น Deploy โปรเจคไปยัง Heroku, Streamlit Cloud หรือ Cloud Server อื่นๆ เช่น DigitalOcean / AWS / Google Cloud / Azure

กิตติกรรมประกาศ - Acknowledgements

ส่วนหนึ่งของบทเรียนของ AI Builders ทำการดัดแปลง-แก้ไข-ต่อเติมจาก fastai Practical Deep Learning for Coders v4 part1 ตามลิขสิทธิ์ GNU General Public License v3.0 เพื่อให้เหมาะแก่นักเรียนผู้ใช้ภาษาไทยเป็นภาษาแรก ได้แก่ บทที่ 1 และ 2 (ปรับแต่งจาก Lesson 1 พร้อมเพิ่มเติมเนื้อหา), 3 (ปรับแต่งจาก Lesson 3 และ Lesson 4) และ 7 (แปลเป็นภาษาไทยและเพิ่มเติมเนื้อหาจาก Lesson 5)

We adapted and augmented some lessons from fastai Practical Deep Learning for Coders v4 part1 for our curriculum to suit our students whose first language is Thai, namely Lesson 1 and 2 (adapted from Lesson 1; augmented our original contents), Lesson 3 (adapted from Lesson 3 and Lesson 4), Lesson 7 (translated from Lesson 5 and added localized examples).

You might also like...
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

Releases(slides_prototype_deployment)
Owner
AI Builders
a program for kids who want to build good AI
AI Builders
YOLOv4-v3 Training Automation API for Linux

This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our

BMW TechOffice MUNICH 626 Dec 31, 2022
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte Computer Vision Lab

Kai Zhang 804 Jan 08, 2023
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 9 Jun 17, 2022
Practical and Real-world applications of ML based on the homework of Hung-yi Lee Machine Learning Course 2021

Machine Learning Theory and Application Overview This repository is inspired by the Hung-yi Lee Machine Learning Course 2021. In that course, professo

SilenceJiang 35 Nov 22, 2022
Problem-943.-ACMP - Problem 943. ACMP

Problem-943.-ACMP В "main.py" расположен вариант моего решения задачи 943 с серв

Konstantin Dyomshin 2 Aug 19, 2022
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
Only valid pull requests will be allowed. Use python only and readme changes will not be accepted.

❌ This repo is excluded from hacktoberfest This repo is for python beginners and contains lot of beginner python projects for practice. You can also s

Prajjwal Pathak 50 Dec 28, 2022
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC).

EMTAUC We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC). In this code, SBGA is considered a ba

7 Nov 24, 2022
Example of a Quantum LSTM

Example of a Quantum LSTM

Riccardo Di Sipio 36 Oct 31, 2022
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Junxian He 57 Jan 01, 2023
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search This is the offical implementation of the

SNU ADSL 0 Feb 07, 2022
"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri

"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri Bu Github Reposundaki tüm projeler; kaleme almış olduğum "Projelerle Yapay Zekâ ve Bi

Ümit Aksoylu 4 Aug 03, 2022
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
Python版OpenCVのTracking APIのサンプルです。DaSiamRPNアルゴリズムまで対応しています。

OpenCV-Object-Tracker-Sample Python版OpenCVのTracking APIのサンプルです。   Requirement opencv-contrib-python 4.5.3.56 or later Algorithm 2021/07/16時点でOpenCVには以

KazuhitoTakahashi 36 Jan 01, 2023