8-week curriculum for AI Builders

Overview

curriculum

8-week curriculum for AI Builders

สารบัญ

Week 1 - บทที่ 1 - Machine Learning คืออะไร

ในบทเรียนนี้เราจะเรียนรู้ว่า Artificial Intelligence (AI), Machine Learning (ML) และ Deep Learning (DL) คืออะไร เหมือนกันหรือแตกต่างกันอย่างไร เราจะเรียนรู้ส่วนประกอบของระบบ machine learning และวิธีการเทรน machine learning model ด้วยตัวอย่างจำแนกรูปภาพอาหารไทย 48 ชนิดจากชุดข้อมูล FoodyDudy หลังจากนั้นเราจะเห็นว่าส่วนประกอบและวิธีการเทรนนี้ถูกใช้กับข้อมูลชนิดอื่นๆ เช่น ข้อความ (texts) และตาราง (tabular data) ได้อย่างไรบ้าง

บทเรียนนี้ปรับแต่งและเพิ่มเติมจาก fastai Practical Deep Learning for Coders v4 part1 - Lesson 1 เพื่อให้เหมาะกับโครงการ AI Builders

Video: YouTube

Notebooks: All Parts

Week 2 - บทที่ 2 - ชุดข้อมูลมหัศจรรย์และถิ่นที่อยู่

ในปัจจุบันชุดข้อมูลที่มีพร้อมทั้งปริมาณและคุณภาพเป็นส่วนสำคัญในการสร้าง ML models ในบทเรียนนี้เราจะเรียนรู้วิธีการหาข้อมูลมาเทรนโมเดลของเราทั้งจากชุดข้อมูล open data, web scraping, หรือสร้างขึ้นมาเองจากโมเดลและโค้ด open source ทั้งนี้การหาข้อมูลมาเทรนโมเดลจากแหล่งข้อมูลสาธารณะที่กล่าวมานั้นเราต้องให้ความสำคัญเรื่องลิขสิทธิ์และจริยธรรม (แม้แต่โมเดลเองก็สร้างข้อมูลที่ผิดลิขสิทธิ์-จริยธรรมได้; เรียนเพิ่มเติมในบทที่ 7)

Video: YouTube

Notebooks: All Parts

Week 3 - บทที่ 3 - Stochastic Gradient Descent ตั้งแต่เริ่มต้น

ในบทเรียนนี้ เราจะทำการสร้างวิธีที่โมเดลของเราเรียนรู้ในบทเรียนที่แล้วๆมา เรียกว่า stochastic gradient descent ขึ้นมาเองตั้งแต่ต้นโดยใช้เพียงแค่ Pytorch สำหรับ linear algebra และการทำ partial derivatives เท่านั้น ด้วยตัวอย่างการจำแนกรูปภาพตัวเลข 3 และ 7 ออกจากกัน

บทเรียนแปล-สรุปมาจาก 04_mnist_basics.ipynb ของ fastai ผู้ที่สนใจสามารถไปติดตามบทเรียนต้นทางได้ที่ course.fast.ai

Video: YouTube

Notebooks: All Parts

Track - Vision

Week 4 - 4v Image Classification

ในบทเรียนนี้เราจะมาลองสร้างโมเดล Image classification เพื่อแยกพันธุ์ของน้องหมาโดยใช้เทคนิค Transfer learning ด้วยไลบรารี่ต่างๆ ได้แก่ FastAI, Pytorch และ Pytorch Lightning นอกจากนั้นเราจะมาดูองค์ประกอบของการใช้ Pytorch และการใช้ Image augmentation ด้วยไลบรารี่ torchvision

Video: Part 1, Part 2, Part 3, Part 4

Slides (หน้า 1-33): Google slide, pdf

Notebooks: Part 1, Part 2

Week 5 - 5v Object Detection

ในบทเรียนนี้เราจะลองสร้างโมเดล Object detection ด้วยเทคนิค Transfer learning โดยใช้ไลบรารี่ FastAI และ Pytorch กัน เราจะมาดูหน้าตาของการสร้างชุดข้อมูล Object detection และไปดูเครื่องมือต่างๆที่ใช้สร้างชุดข้อมูล Object detection

Video: Part 1, Part 2, Part 3

Slides (หน้า 34-44): Google slide, pdf

Notebooks: Object Detection, Semantic Segmentation

Week 6 - 6v GANs and Advanced Topics

TBA ในสัปดาห์นี้เราจะมาดูการใช้ Deep learning กับ tasks ต่างๆเช่น sequence recognition และ GAN กัน

Video: [TBA]

Slides (หน้า 45-48): Google slide, pdf

Notebooks: [TBA]

Track - Texts

Week 4 - บทที่ 4n - NLP คืออะไร? บทเรียนจากอดีตสู่ปัจจุบัน

ในบทนี้เราจะเรียนเกี่ยวกับ NLP ตั้งแต่พื้นฐาน ไปจนถึง NLP ในยุคปัจจุบันว่ามีการพัฒนาไปอย่างไรบ้าง พร้อมทั้งยกตัวอย่างการทำ text classification (การจำแนกข้อความ) ด้วยวิธีตั้งแต่อดีตยันปัจจุบัน

Video: YouTube

Slides: Google Slides, pdf

Notebooks: All Parts

Week 5 - บทที่ 5n - การเทรนโมเดลบน Hugging Face พาร์ท 1

ในปัจจุบันการทำงานด้าน NLP มักจะนิยมใช้งาน Deep Learning ในการแก้ปัญหาโจทย์ที่มีความซับซ้อนสูง โดย Library ที่เป็นที่นิยมในปัจจุบันคือ Hugging Face (transformers, datasets, tokenizers) โดยในบทเรียนนี้เราจะมาเรียนการใช้งาน Hugging Face เพื่อเทรนโมเดลในงานด้าน NLP!

Video: YouTube

Slides: Google Slides, pdf

Notebooks: Part 1, Part 2, Part 3

Week 6 - บทที่ 6n - การเทรนโมเดลบน Hugging Face พาร์ท 2

หลังจากที่เราได้เรียนรู้พื้นฐานของการใช้งาน Hugging Face แล้ว เราจะมาเทรนโมเดลเพื่องานที่ซับซ้อนมากขึ้น เช่น Machine Translation (เครื่องแปลภาษา), Question Answering (ระบบถาม-ตอบ) และ Sentence Representation (การแปลงข้อความให้เป็นข้อมูล)

Video: YouTube

Slides: Google Slides, pdf

Notebooks: Part 1, Part 2, Part 3

Track - Tabular Data

Week 4 - บทที่ 4t - Introduction to Tabular Data, Correlation and Regression

การสร้างสมการความสัมพันธ์ (correlation) เพื่อทำนายตัวแปรประเภทตัวเลข (numerical) เพื่อนำไปใช้ในการหาความสัมพันธ์หรือพยากรณ์ เช่น การหาความสัมพันธ์ระหว่างตัวแปรที่มีผลต่อยอดขาย หรือ ทำนายพยากรณ์ยอดขายในอนาคต

Video: Part 1, Part 2, Part 3

Notebooks: Part 1, Part 2, Part 3

Week 5 - บทที่ 5t - Classification

การสร้างสมการความสัมพันธ์ เพื่อทำนายตัวแปรประเภทกลุ่ม/ชนิด (categorical) เพื่อใช้ในการทำนายหรือเลือกทางเลือก เช่น ทำนายว่าลูกค้าคนไหนจะหยุดใช้บริการ ทำนายว่าลูกค้าคนไหน เมื่อส่งคูปองไปแล้วจะใช้ หรือ ทำนายว่าเครื่องจักรจะเสียหรือไม่

Video: Part 1, Part 2

Notebooks: Part 1, Part 2

Week 6 - บทที่ 6t - Similarity, Recommendation and Clustering

การวิเคราะห์ความคลายคลึงและการแบ่งกลุ่มข้อมูล เพื่อนำไปใช้ในการแนะนำสินค้าหรือเนื้อหาที่ลูกค้าสนใจ เช่น Shopee แนะนำสินค้าที่เราสนใจ หรือ spotify แนะนำเพลงที่ผู้ฟังน่าจะอยากฟังต่อไป รวมถึงการนำข้อมูลมาใช้ในการแบ่งกลุ่มลูกค้าที่มีความสนใจเหมือนกันสำหรับนำไปทำการตลาดเฉพาะกลุ่ม

Video: YouTube

Notebooks: TBA

Week 7 - บทที่ 7 - จริยธรรมปัญญาประดิษฐ์

เมื่อปัญญาประดิษฐ์เข้ามามีบทบาทในชีวิตประจำวัน รวมถึงใช้ในการทำงานสาขาต่างๆ อาทิ ช่วยตรวจโรค ช่วยตรวจจับผู้กระทำผิด หรือช่วยตัดสินค่าตอบแทน/บทลงโทษ ฯลฯ จะเห็นได้ว่าปัญญาประดิษฐ์เกี่ยวข้องกับประเด็นทางสังคมและส่งผลกระทบต่อคนเป็นจำนวนมาก บางครั้งปัญญาประดิษฐ์มีการตัดสินใจที่ผิดพลาด ส่งผลกระทบกับชีวิตของคน หลายครั้งปัญญาประดิษฐ์เป็นส่วนหนึ่งของการเผยแพร่อคติโดยที่ผู้พัฒนาคาดไม่ถึง หรือบางกรณีเป็นการจงใจนำปัญญาประดิษฐ์ไปใช้เพื่อการทำร้ายผู้อื่น การพัฒนาปัญญาประดิษฐ์จึงต้องคำนึงถึงหลักจริยธรรมปัญญาประดิษฐ์หรือ AI Ethics ในการพัฒนาเทคโนโลยีอย่างมีความรับผิดชอบ ในสัปดาห์นี้ เราจะมาทำความเข้าใจว่าปัญญาประดิษฐ์ก็สามารถมีอคติในการรับและเผยแพร่ข้อมูลได้อย่างไร รวมถึงคำนึงถึงโอกาสที่เทคโนโลยีจะถูกนำไปใช้ในทางที่ผิดและเราจะหาทางป้องกันความเสี่ยงได้อย่างไร

บทเรียนนี้แปลเป็นภาษาไทยและเพิ่มเติมเนื้อหาจาก Lesson 5 ของ fastai Practical Deep Learning for Coders v4 part1 โดย Rachel Thomas

Video: YouTube

Slides: pdf

Week 8 - บทที่ 8 - Prototype Deployment

ในบทเรียนนี้จะแนะนำวิธีการ Deploy โปรเจค ML / AI โดยจะนำ source code ที่เขียนไว้ใน notebook มาสร้างเป็นโปรเจค Streamlit, เรียนรู้ widget ต่างๆของ Streamlit เพื่อใช้ทำ Visualization ไม่ว่าจะเป็นการนำผลลัพธ์จากการรันโมเดลมาพล็อตเป็นกราฟ ตาราง แสดงรูปภาพที่เกี่ยวข้อง และอื่นๆ รวมโค้ดทั้งหมดออกเป็นเป็นโปรเจค จากนั้น Deploy โปรเจคไปยัง Heroku, Streamlit Cloud หรือ Cloud Server อื่นๆ เช่น DigitalOcean / AWS / Google Cloud / Azure

กิตติกรรมประกาศ - Acknowledgements

ส่วนหนึ่งของบทเรียนของ AI Builders ทำการดัดแปลง-แก้ไข-ต่อเติมจาก fastai Practical Deep Learning for Coders v4 part1 ตามลิขสิทธิ์ GNU General Public License v3.0 เพื่อให้เหมาะแก่นักเรียนผู้ใช้ภาษาไทยเป็นภาษาแรก ได้แก่ บทที่ 1 และ 2 (ปรับแต่งจาก Lesson 1 พร้อมเพิ่มเติมเนื้อหา), 3 (ปรับแต่งจาก Lesson 3 และ Lesson 4) และ 7 (แปลเป็นภาษาไทยและเพิ่มเติมเนื้อหาจาก Lesson 5)

We adapted and augmented some lessons from fastai Practical Deep Learning for Coders v4 part1 for our curriculum to suit our students whose first language is Thai, namely Lesson 1 and 2 (adapted from Lesson 1; augmented our original contents), Lesson 3 (adapted from Lesson 3 and Lesson 4), Lesson 7 (translated from Lesson 5 and added localized examples).

You might also like...
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

Releases(slides_prototype_deployment)
Owner
AI Builders
a program for kids who want to build good AI
AI Builders
This is the face keypoint train code of project face-detection-project

face-key-point-pytorch 1. Data structure The structure of landmarks_jpg is like below: |--landmarks_jpg |----AFW |------AFW_134212_1_0.jpg |------AFW_

I‘m X 3 Nov 27, 2022
A TensorFlow Implementation of "Deep Multi-Scale Video Prediction Beyond Mean Square Error" by Mathieu, Couprie & LeCun.

Adversarial Video Generation This project implements a generative adversarial network to predict future frames of video, as detailed in "Deep Multi-Sc

Matt Cooper 704 Nov 26, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation

GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene

UW-Madison Computational Materials Group 2 Feb 10, 2021
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
A treasure chest for visual recognition powered by PaddlePaddle

简体中文 | English PaddleClas 简介 飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 近期更新 2021.11.1 发布PP-ShiTu技术报告,新增饮料识别demo 2021.10.23 发

4.6k Dec 31, 2022
This is the implementation of the paper "Self-supervised Outdoor Scene Relighting"

Self-supervised Outdoor Scene Relighting This is the implementation of the paper "Self-supervised Outdoor Scene Relighting". The model is implemented

Ye Yu 24 Dec 17, 2022
Lucid Sonic Dreams syncs GAN-generated visuals to music.

Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses NVLabs StyleGAN2, with pre-trained models lifted from

731 Jan 02, 2023
Photographic Image Synthesis with Cascaded Refinement Networks - Pytorch Implementation

Photographic Image Synthesis with Cascaded Refinement Networks-Pytorch (https://arxiv.org/abs/1707.09405) This is a Pytorch implementation of cascaded

Soumya Tripathy 63 Mar 27, 2022
A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021)

GDN A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021) Abstract In this paper, we consider an inverse problem i

4 Sep 13, 2022
A GUI for Face Recognition, based upon Docker, Tkinter, GPU and a camera device.

Face Recognition GUI This repository is a GUI version of Face Recognition by Adam Geitgey, where e.g. Docker and Tkinter are utilized. All the materia

Kasper Henriksen 6 Dec 05, 2022
Official repository for the CVPR 2021 paper "Learning Feature Aggregation for Deep 3D Morphable Models"

Deep3DMM Official repository for the CVPR 2021 paper Learning Feature Aggregation for Deep 3D Morphable Models. Requirements This code is tested on Py

38 Dec 27, 2022
🌊 Online machine learning in Python

In a nutshell River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition

OnlineML 4k Jan 02, 2023
Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

ProGen - (wip) Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily

Phil Wang 71 Dec 01, 2022
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

48 Dec 26, 2022
Go from graph data to a secure and interactive visual graph app in 15 minutes. Batteries-included self-hosting of graph data apps with Streamlit, Graphistry, RAPIDS, and more!

✔️ Linux ✔️ OS X ❌ Windows (#39) Welcome to graph-app-kit Turn your graph data into a secure and interactive visual graph app in 15 minutes! Why This

Graphistry 107 Jan 02, 2023
Official PyTorch repo for JoJoGAN: One Shot Face Stylization

JoJoGAN: One Shot Face Stylization This is the PyTorch implementation of JoJoGAN: One Shot Face Stylization. Abstract: While there have been recent ad

1.3k Dec 29, 2022
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022