Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Overview

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution

visitors

Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte
Computer Vision Lab, ETH Zurich, Switzerland

[Paper] [Code] [Training Code]

Our work is the beginning rather than the end of real image super-resolution.


  • News (2021-08-31): We upload the training code.
  • News (2021-08-24): We upload the BSRGAN degradation model.
from utils import utils_blindsr as blindsr
img_lq, img_hq = blindsr.degradation_bsrgan(img, sf=4, lq_patchsize=72)
  • News (2021-07-23): After rejection by CVPR 2021, our paper is accepted by ICCV 2021. For the sake of fairness, we will not update the trained models in our camera-ready version. However, we may updata the trained models in github.
  • News (2021-05-18): Add trained BSRGAN model for scale factor 2.
  • News (2021-04): Our degradation model for face image enhancement: https://github.com/vvictoryuki/BSRGAN_implementation

Training

  1. Download KAIR: git clone https://github.com/cszn/KAIR.git
  2. Put your training high-quality images into trainsets/trainH or set "dataroot_H": "trainsets/trainH"
  3. Train BSRNet
    1. Modify train_bsrgan_x4_psnr.json e.g., "gpu_ids": [0], "dataloader_batch_size": 4
    2. Training with DataParallel
    python main_train_psnr.py --opt options/train_bsrgan_x4_psnr.json
    1. Training with DistributedDataParallel - 4 GPUs
    python -m torch.distributed.launch --nproc_per_node=4 --master_port=1234 main_train_psnr.py --opt options/train_bsrgan_x4_psnr.json  --dist True
  4. Train BSRGAN
    1. Put BSRNet model (e.g., '400000_G.pth') into superresolution/bsrgan_x4_gan/models
    2. Modify train_bsrgan_x4_gan.json e.g., "gpu_ids": [0], "dataloader_batch_size": 4
    3. Training with DataParallel
    python main_train_gan.py --opt options/train_bsrgan_x4_gan.json
    1. Training with DistributedDataParallel - 4 GPUs
    python -m torch.distributed.launch --nproc_per_node=4 --master_port=1234 main_train_gan.py --opt options/train_bsrgan_x4_gan.json  --dist True
  5. Test BSRGAN model 'xxxxxx_E.pth' by modified main_test_bsrgan.py
    1. 'xxxxxx_E.pth' is more stable than 'xxxxxx_G.pth'

Some visual examples: oldphoto2; butterfly; comic; oldphoto3; oldphoto6; comic_01; comic_03; comic_04


Testing code

Main idea

Design a new degradation model to synthesize LR images for training:

  • 1) Make the blur, downsampling and noise more practical
    • Blur: two convolutions with isotropic and anisotropic Gaussian kernels from both the HR space and LR space
    • Downsampling: nearest, bilinear, bicubic, down-up-sampling
    • Noise: Gaussian noise, JPEG compression noise, processed camera sensor noise
  • 2) Degradation shuffle: instead of using the commonly-used blur/downsampling/noise-addition pipeline, we perform randomly shuffled degradations to synthesize LR images

Some notes on the proposed degradation model:

  • The degradation model is mainly designed to synthesize degraded LR images. Its most direct application is to train a deep blind super-resolver with paired LR/HR images. In particular, the degradation model can be performed on a large dataset of HR images to produce unlimited perfectly aligned training images, which typically do not suffer from the limited data issue of laboriously collected paired data and the misalignment issue of unpaired training data.

  • The degradation model tends to be unsuited to model a degraded LR image as it involves too many degradation parameters and also adopts a random shuffle strategy.

  • The degradation model can produce some degradation cases that rarely happen in real-world scenarios, while this can still be expected to improve the generalization ability of the trained deep blind super-resolver.

  • A DNN with large capacity has the ability to handle different degradations via a single model. This has been validated multiple times. For example, DnCNN is able to handle SISR with different scale factors, JPEG compression deblocking with different quality factors and denoising for a wide range of noise levels, while still having a performance comparable to VDSR for SISR. It is worth noting that even when the super-resolver reduces the performance for unrealistic bicubic downsampling, it is still a preferred choice for real SISR.

  • One can conveniently modify the degradation model by changing the degradation parameter settings and adding more reasonable degradation types to improve the practicability for a certain application.

Comparison

These no-reference IQA metrics, i.e., NIQE, NRQM and PI, do not always match perceptual visual quality [1] and the IQA metric should be updated with new SISR methods [2]. We further argue that the IQA metric for SISR should also be updated with new image degradation types, which we leave for future work.

[1] "NTIRE 2020 challenge on real-world image super-resolution: Methods and results." CVPRW, 2020.
[2] "PIPAL: a large-scale image quality assessment dataset for perceptual image restoration." ECCV, 2020.

More visual results on RealSRSet dataset

Left: real images | Right: super-resolved images with scale factor 4

Visual results on DPED dataset

Without using any prior information of DPED dataset for training, our BSRGAN still performs well.

Citation

@inproceedings{zhang2021designing,
  title={Designing a Practical Degradation Model for Deep Blind Image Super-Resolution},
  author={Zhang, Kai and Liang, Jingyun and Van Gool, Luc and Timofte, Radu},
  booktitle={arxiv},
  year={2021}
}

Acknowledgments

This work was partly supported by the ETH Zurich Fund (OK), a Huawei Technologies Oy (Finland) project, and an Amazon AWS grant.

Owner
Kai Zhang
Image Restoration; Inverse Problems
Kai Zhang
Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

CMU Locus Lab 164 Dec 29, 2022
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Course materials for Fall 2021 "CIS6930 Topics in Computing for Data Science" at New College of Florida

Fall 2021 CIS6930 Topics in Computing for Data Science This repository hosts course materials used for a 13-week course "CIS6930 Topics in Computing f

Yoshi Suhara 101 Nov 30, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
PyTorch-based framework for Deep Hedging

PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien

139 Dec 30, 2022
Research on Event Accumulator Settings for Event-Based SLAM

Research on Event Accumulator Settings for Event-Based SLAM This is the source code for paper "Research on Event Accumulator Settings for Event-Based

Robin Shaun 26 Dec 21, 2022
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023
piSTAR Lab is a modular platform built to make AI experimentation accessible and fun. (pistar.ai)

piSTAR Lab WARNING: This is an early release. Overview piSTAR Lab is a modular deep reinforcement learning platform built to make AI experimentation a

piSTAR Lab 0 Aug 01, 2022
A plug-and-play library for neural networks written in Python

A plug-and-play library for neural networks written in Python!

Dimos Michailidis 2 Jul 16, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
Learning Dense Representations of Phrases at Scale (Lee et al., 2020)

DensePhrases DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches th

Princeton Natural Language Processing 540 Dec 30, 2022
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
Code for "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection", ICRA 2021

FGR This repository contains the python implementation for paper "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection"(I

Yi Wei 31 Dec 08, 2022
The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store dev

George Rocha 0 Feb 03, 2022
COIN the currently largest dataset for comprehensive instruction video analysis.

COIN Dataset COIN is the currently largest dataset for comprehensive instruction video analysis. It contains 11,827 videos of 180 different tasks (i.e

86 Dec 28, 2022
Misc YOLOL scripts for use in the Starbase space sandbox videogame

starbase-misc Misc YOLOL scripts for use in the Starbase space sandbox videogame. Each directory contains standalone YOLOL scripts. They don't really

4 Oct 17, 2021