Generate custom detailed survey paper with topic clustered sections and proper citations, from just a single query in just under 30 mins !!

Overview

Auto-Research

Auto-Research

A no-code utility to generate a detailed well-cited survey with topic clustered sections (draft paper format) and other interesting artifacts from a single research query.

Data Provider: arXiv Open Archive Initiative OAI

Requirements:

  • python 3.7 or above
  • poppler-utils
  • list of requirements in requirements.txt
  • 8GB disk space
  • 13GB CUDA(GPU) memory - for a survey of 100 searched papers(max_search) and 25 selected papers(num_papers)

Demo :

Video Demo : https://drive.google.com/file/d/1-77J2L10lsW-bFDOGdTaPzSr_utY743g/view?usp=sharing

Kaggle Re-usable Demo : https://www.kaggle.com/sidharthpal/auto-research-generate-survey-from-query

([TIP] click 'edit and run' to run the demo for your custom queries on a free GPU)

Steps to run (pip coming soon):

apt install -y poppler-utils libpoppler-cpp-dev
git clone https://github.com/sidphbot/Auto-Research.git

cd Auto-Research/
pip install -r requirements.txt
python survey.py [options] <your_research_query>

Artifacts generated (zipped):

  • Detailed survey draft paper as txt file
  • A curated list of top 25+ papers as pdfs and txts
  • Images extracted from above papers as jpegs, bmps etc
  • Heading/Section wise highlights extracted from above papers as a re-usable pure python joblib dump
  • Tables extracted from papers(optional)
  • Corpus of metadata highlights/text of top 100 papers as a re-usable pure python joblib dump

Example run #1 - python utility

python survey.py 'multi-task representation learning'

Example run #2 - python class

from survey import Surveyor
mysurveyor = Surveyor()
mysurveyor.survey('quantum entanglement')

Research tools:

These are independent tools for your research or document text handling needs.

*[Tip]* :(models can be changed in defaults or passed on during init along with `refresh-models=True`)
  • abstractive_summary - takes a long text document (string) and returns a 1-paragraph abstract or “abstractive” summary (string)

    Input:

      `longtext` : string
    

    Returns:

      `summary` : string
    
  • extractive_summary - takes a long text document (string) and returns a 1-paragraph of extracted highlights or “extractive” summary (string)

    Input:

      `longtext` : string
    

    Returns:

      `summary` : string
    
  • generate_title - takes a long text document (string) and returns a generated title (string)

    Input:

      `longtext` : string
    

    Returns:

      `title` : string
    
  • extractive_highlights - takes a long text document (string) and returns a list of extracted highlights ([string]), a list of keywords ([string]) and key phrases ([string])

    Input:

      `longtext` : string
    

    Returns:

      `highlights` : [string]
      `keywords` : [string]
      `keyphrases` : [string]
    
  • extract_images_from_file - takes a pdf file name (string) and returns a list of image filenames ([string]).

    Input:

      `pdf_file` : string
    

    Returns:

      `images_files` : [string]
    
  • extract_tables_from_file - takes a pdf file name (string) and returns a list of csv filenames ([string]).

    Input:

      `pdf_file` : string
    

    Returns:

      `images_files` : [string]
    
  • cluster_lines - takes a list of lines (string) and returns the topic-clustered sections (dict(generated_title: [cluster_abstract])) and clustered lines (dict(cluster_id: [cluster_lines]))

    Input:

      `lines` : [string]
    

    Returns:

      `sections` : dict(generated_title: [cluster_abstract])
      `clusters` : dict(cluster_id: [cluster_lines])
    
  • extract_headings - [for scientific texts - Assumes an ‘abstract’ heading present] takes a text file name (string) and returns a list of headings ([string]) and refined lines ([string]).

    [Tip 1] : Use extract_sections as a wrapper (e.g. extract_sections(extract_headings(“/path/to/textfile”)) to get heading-wise sectioned text with refined lines instead (dict( heading: text))

    [Tip 2] : write the word ‘abstract’ at the start of the file text to get an extraction for non-scientific texts as well !!

    Input:

      `text_file` : string 		
    

    Returns:

      `refined` : [string], 
      `headings` : [string]
      `sectioned_doc` : dict( heading: text) (Optional - Wrapper case)
    

Access/Modify defaults:

  • inside code
from survey.Surveyor import DEFAULTS
from pprint import pprint

pprint(DEFAULTS)

or,

  • Modify static config file - defaults.py

or,

  • At runtime (utility)
python survey.py --help
usage: survey.py [-h] [--max_search max_metadata_papers]
                   [--num_papers max_num_papers] [--pdf_dir pdf_dir]
                   [--txt_dir txt_dir] [--img_dir img_dir] [--tab_dir tab_dir]
                   [--dump_dir dump_dir] [--models_dir save_models_dir]
                   [--title_model_name title_model_name]
                   [--ex_summ_model_name extractive_summ_model_name]
                   [--ledmodel_name ledmodel_name]
                   [--embedder_name sentence_embedder_name]
                   [--nlp_name spacy_model_name]
                   [--similarity_nlp_name similarity_nlp_name]
                   [--kw_model_name kw_model_name]
                   [--refresh_models refresh_models] [--high_gpu high_gpu]
                   query_string

Generate a survey just from a query !!

positional arguments:
  query_string          your research query/keywords

optional arguments:
  -h, --help            show this help message and exit
  --max_search max_metadata_papers
                        maximium number of papers to gaze at - defaults to 100
  --num_papers max_num_papers
                        maximium number of papers to download and analyse -
                        defaults to 25
  --pdf_dir pdf_dir     pdf paper storage directory - defaults to
                        arxiv_data/tarpdfs/
  --txt_dir txt_dir     text-converted paper storage directory - defaults to
                        arxiv_data/fulltext/
  --img_dir img_dir     image storage directory - defaults to
                        arxiv_data/images/
  --tab_dir tab_dir     tables storage directory - defaults to
                        arxiv_data/tables/
  --dump_dir dump_dir   all_output_dir - defaults to arxiv_dumps/
  --models_dir save_models_dir
                        directory to save models (> 5GB) - defaults to
                        saved_models/
  --title_model_name title_model_name
                        title model name/tag in hugging-face, defaults to
                        'Callidior/bert2bert-base-arxiv-titlegen'
  --ex_summ_model_name extractive_summ_model_name
                        extractive summary model name/tag in hugging-face,
                        defaults to 'allenai/scibert_scivocab_uncased'
  --ledmodel_name ledmodel_name
                        led model(for abstractive summary) name/tag in
                        hugging-face, defaults to 'allenai/led-
                        large-16384-arxiv'
  --embedder_name sentence_embedder_name
                        sentence embedder name/tag in hugging-face, defaults
                        to 'paraphrase-MiniLM-L6-v2'
  --nlp_name spacy_model_name
                        spacy model name/tag in hugging-face (if changed -
                        needs to be spacy-installed prior), defaults to
                        'en_core_sci_scibert'
  --similarity_nlp_name similarity_nlp_name
                        spacy downstream model(for similarity) name/tag in
                        hugging-face (if changed - needs to be spacy-installed
                        prior), defaults to 'en_core_sci_lg'
  --kw_model_name kw_model_name
                        keyword extraction model name/tag in hugging-face,
                        defaults to 'distilbert-base-nli-mean-tokens'
  --refresh_models refresh_models
                        Refresh model downloads with given names (needs
                        atleast one model name param above), defaults to False
  --high_gpu high_gpu   High GPU usage permitted, defaults to False

  • At runtime (code)

    during surveyor object initialization with surveyor_obj = Surveyor()

    • pdf_dir: String, pdf paper storage directory - defaults to arxiv_data/tarpdfs/
    • txt_dir: String, text-converted paper storage directory - defaults to arxiv_data/fulltext/
    • img_dir: String, image image storage directory - defaults to arxiv_data/images/
    • tab_dir: String, tables storage directory - defaults to arxiv_data/tables/
    • dump_dir: String, all_output_dir - defaults to arxiv_dumps/
    • models_dir: String, directory to save to huge models, defaults to saved_models/
    • title_model_name: String, title model name/tag in hugging-face, defaults to Callidior/bert2bert-base-arxiv-titlegen
    • ex_summ_model_name: String, extractive summary model name/tag in hugging-face, defaults to allenai/scibert_scivocab_uncased
    • ledmodel_name: String, led model(for abstractive summary) name/tag in hugging-face, defaults to allenai/led-large-16384-arxiv
    • embedder_name: String, sentence embedder name/tag in hugging-face, defaults to paraphrase-MiniLM-L6-v2
    • nlp_name: String, spacy model name/tag in hugging-face (if changed - needs to be spacy-installed prior), defaults to en_core_sci_scibert
    • similarity_nlp_name: String, spacy downstream trained model(for similarity) name/tag in hugging-face (if changed - needs to be spacy-installed prior), defaults to en_core_sci_lg
    • kw_model_name: String, keyword extraction model name/tag in hugging-face, defaults to distilbert-base-nli-mean-tokens
    • high_gpu: Bool, High GPU usage permitted, defaults to False
    • refresh_models: Bool, Refresh model downloads with given names (needs atleast one model name param above), defaults to False

    during survey generation with surveyor_obj.survey(query="my_research_query")

    • max_search: int maximium number of papers to gaze at - defaults to 100
    • num_papers: int maximium number of papers to download and analyse - defaults to 25
You might also like...
 NLP topic mdel LDA - Gathered from New York Times website
NLP topic mdel LDA - Gathered from New York Times website

NLP topic mdel LDA - Gathered from New York Times website

This repo stores the codes for topic modeling on palliative care journals.

This repo stores the codes for topic modeling on palliative care journals. Data Preparation You first need to download the journal papers. bash 1_down

topic modeling on unstructured data in Space news articles retrieved from the Guardian (UK) newspaper using API
topic modeling on unstructured data in Space news articles retrieved from the Guardian (UK) newspaper using API

NLP Space News Topic Modeling Photos by nasa.gov (1, 2, 3, 4, 5) and extremetech.com Table of Contents Project Idea Data acquisition Primary data sour

Biterm Topic Model (BTM): modeling topics in short texts
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

Topic Inference with Zeroshot models

zeroshot_topics Table of Contents Installation Usage License Installation zeroshot_topics is distributed on PyPI as a universal wheel and is available

Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingwai
Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingwai

TextCortex - HemingwAI Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingw

A python framework to transform natural language questions to queries in a database query language.

__ _ _ _ ___ _ __ _ _ / _` | | | |/ _ \ '_ \| | | | | (_| | |_| | __/ |_) | |_| | \__, |\__,_|\___| .__/ \__, | |_| |_| |___/

Code for
Code for "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022.

README Code for Two-stage Identifier: "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022. For details of the model a

Releases(0.0.2)
Owner
Sidharth Pal
Deep learning researcher with a huge passion for open source and an undying motivation to help the community.
Sidharth Pal
Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch

N-Grammer - Pytorch Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch Install $ pip install n-grammer-pytorch Usage

Phil Wang 66 Dec 29, 2022
Mysticbbs-rjam - rJAM splitscreen message reader for MysticBBS A46+

rJAM splitscreen message reader for MysticBBS A46+

Robbert Langezaal 4 Nov 22, 2022
End-to-end MLOps pipeline of a BERT model for emotion classification.

image source EmoBERT-MLOps The goal of this repository is to build an end-to-end MLOps pipeline based on the MLOps course from Made with ML, but this

Dimitre Oliveira 4 Nov 06, 2022
Toy example of an applied ML pipeline for me to experiment with MLOps tools.

Toy Machine Learning Pipeline Table of Contents About Getting Started ML task description and evaluation procedure Dataset description Repository stru

Shreya Shankar 190 Dec 21, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
A PyTorch implementation of VIOLET

VIOLET: End-to-End Video-Language Transformers with Masked Visual-token Modeling A PyTorch implementation of VIOLET Overview VIOLET is an implementati

Tsu-Jui Fu 119 Dec 30, 2022
Python implementation of TextRank for phrase extraction and summarization of text documents

PyTextRank PyTextRank is a Python implementation of TextRank as a spaCy pipeline extension, used to: extract the top-ranked phrases from text document

derwen.ai 1.9k Jan 06, 2023
ConferencingSpeech2022; Non-intrusive Objective Speech Quality Assessment (NISQA) Challenge

ConferencingSpeech 2022 challenge This repository contains the datasets list and scripts required for the ConferencingSpeech 2022 challenge. For more

21 Dec 02, 2022
A combination of autoregressors and autoencoders using XLNet for sentiment analysis

A combination of autoregressors and autoencoders using XLNet for sentiment analysis Abstract In this paper sentiment analysis has been performed in or

James Zaridis 2 Nov 20, 2021
Simple bots or Simbots is a library designed to create simple bots using the power of python. This library utilises Intent, Entity, Relation and Context model to create bots .

Simple bots or Simbots is a library designed to create simple chat bots using the power of python. This library utilises Intent, Entity, Relation and

14 Dec 15, 2021
ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体

ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体,包括上市公司所属行业关系、行业上级关系、产品上游原材料关系、产品下游产品关系、公司主营产品、产品小类共6大类。 上市公司4,654家,行业511个,产品95,559条、上游材料56,824条,上级行业480条,下游产品390条,产品小类52,937条,所属行业3,946条。

liuhuanyong 415 Jan 06, 2023
Sentence boundary disambiguation tool for Japanese texts (日本語文境界判定器)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e '宿を予約しました♪!まだ2ヶ月も先だけど。早すぎ

Megagon Labs 160 Dec 23, 2022
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.

keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea

Gagan Bhatia 364 Jan 03, 2023
Question and answer retrieval in Turkish with BERT

trfaq Google supported this work by providing Google Cloud credit. Thank you Google for supporting the open source! 🎉 What is this? At this repo, I'm

M. Yusuf Sarıgöz 13 Oct 10, 2022
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

THUNLP-MT 46 Dec 15, 2022
Modular and extensible speech recognition library leveraging pytorch-lightning and hydra.

Lightning ASR Modular and extensible speech recognition library leveraging pytorch-lightning and hydra What is Lightning ASR • Installation • Get Star

Soohwan Kim 40 Sep 19, 2022
Opal-lang - A WIP programming language based on Python

thanks to aphitorite for the beautiful logo! opal opal is a WIP transcompiled pr

3 Nov 04, 2022
fastai ulmfit - Pretraining the Language Model, Fine-Tuning and training a Classifier

fast.ai ULMFiT with SentencePiece from pretraining to deployment Motivation: Why even bother with a non-BERT / Transformer language model? Short answe

Florian Leuerer 26 May 27, 2022
A 10000+ hours dataset for Chinese speech recognition

A 10000+ hours dataset for Chinese speech recognition

309 Dec 16, 2022