topic modeling on unstructured data in Space news articles retrieved from the Guardian (UK) newspaper using API

Overview

NLP Space News Topic Modeling

Photos by nasa.gov (1, 2, 3, 4, 5) and extremetech.com

Binder Open In Colab nbviewer pre-commit CI CodeQL License: MIT OpenSource Code style: black prs-welcome pyup

Table of Contents

  1. Project Idea
  2. Data acquisition
  3. Analysis
  4. Usage
  5. Project Organization

Project Idea

This project aims to learn topics published in Space news from the Guardian (UK) news publication1.

1: articles were also retrieved from the blog Space.com (web scraping), the New York Times (space news from the science section) and from the Hubble Telescope news archive, but these data sources were not used in analysis

Data acquisition

Primary data source

News articles are retrieved using the official API provided by the Guardian.

Supplementary data sources

Data is also acquired from articles published by the Hubble Telescope, the New York Times (US) and blog publication Space.com

Although these articles were acquired, they were not used in analysis.

Data file creation

  1. Use 1_get_list_of_urls.ipynb
    • programmatically retrieves urls from API or archive of publication
    • retrieves metadata such as date and time, section, sub-section, headline/abstract/short summary, etc.
  2. Use 2_scrape_urls.ipynb
    • scrapes news article text from publication url
  3. Use 3_merge_scraped_and_filter.ipynb
    • merge metadata (1_get_list_of_urls.ipynb) with scraped article text (2_scrape_urls.ipynb)

Analysis

Analysis will be performed using an un-supervised learning model. Details are included in the 8_gensim_coherence_nlp_trials_v3.ipynb notebook in the root directory.

Usage

  1. Clone this repository
    $ git clone
  2. Create Python virtual environment, install packages and launch interactive Python platform
    $ make build
  3. Run notebooks in the following order
    • 3_merge_scraped_and_filter.ipynb (view) (covers data from the Hubble news feed, New York Times and Space.com)
      • merge multiple files of articles text data retrieved from news publications API or archive
      • filter out articles of less than 500 words
      • export to *.csv file for use in unsupervised machine learning models
    • 8_gensim_coherence_nlp_trials_v3.ipynb (view) (does not cover data from the Hubble news feed, New York Times and Space.com)
      • experiments in selecting number of topics using
        • coherence score from built-in coherence model to score Gensim's NMF
        • sklearn's implementation of TFIDF + NMF, using best number of topics found using Gensim's NMF
      • manually reading articles that NMF associates with each topic
    • 9_nlp_workflow.ipynb (view)
      • code-only version of 9_gensim_coherence_nlp_trials_v3.ipynb, with necessary considerations for deployment of topic model

Project Organization

├── .pre-commit-config.yaml       <- configuration file for pre-commit hooks
├── .github
│   ├── workflows
│       └── integrate.yml         <- configuration file for Github Actions
├── LICENSE
├── environment.yml               <- configuration file to create environment to run project on Binder
├── Makefile                      <- Makefile with commands like `make lint` or `make build`
├── README.md                     <- The top-level README for developers using this project.
├── app
│   ├── data                      <- data exported from training topic modeler, for use with API
|   └── tests                     <- Source code for use in API tests
|       ├── test-logs             <- Reports from running unit tests on API
|       └── testing_utils         <- Source code for use in unit tests
|           └── *.py              <- Scripts to use in testing API routes
|       ├── __init__.py           <- Allows Python modules to be imported from testing_utils
|       └── test_api.py           <- Unit tests for API
├── api.py                        <- Defines API routes
├── pytest.ini                    <- Test configuration
├── requirements.txt              <- Packages required to run and test API
├── s*,t*.py                      <- Scripts to use in defining API routes
├── data
│   ├── raw                       <- raw data retrieved from news publication
|   └── processed                 <- merged and filtered data
├── executed-notebooks            <- Notebooks with output.
├── *.ipynb                       <- Jupyter notebooks. Naming convention is a number (for ordering),
│                                    and a short `-` delimited description
├── requirements.txt              <- packages required to execute all Jupyter notebooks interactively (not from CI)
├── setup.py                      <- makes project pip installable (pip install -e .) so `src` can be imported
├── src                           <- Source code for use in this project.
│   ├── __init__.py               <- Makes src a Python module
│   └── *.py                      <- Scripts to use in analysis for pre-processing, training, etc.
├── papermill_runner.py           <- Python functions that execute system shell commands.
└── tox.ini                       <- tox file with settings for running tox; see tox.testrun.org

Project based on the cookiecutter data science project template. #cookiecutterdatascience

Owner
edesz
edesz
The Sudachi synonym dictionary in Solar format.

solr-sudachi-synonyms The Sudachi synonym dictionary in Solar format. Summary Run a script that checks for updates to the Sudachi dictionary every hou

Karibash 3 Aug 19, 2022
A simple Speech Emotion Recognition (SER) API created using Flask and running in a Docker container.

keyword_searching Steps to use this Python scripts: (1)Paste this script into the file folder containing the PDF files you need to search from; (2)Thi

2 Nov 11, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
PORORO: Platform Of neuRal mOdels for natuRal language prOcessing

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing pororo performs Natural Language Processing and Speech-related tasks. It is easy to

Kakao Brain 1.2k Dec 21, 2022
KoBART model on huggingface transformers

KoBART-Transformers SKT에서 공개한 KoBART를 편리하게 사용할 수 있게 transformers로 포팅하였습니다. Install (Optional) BartModel과 PreTrainedTokenizerFast를 이용하면 설치하실 필요 없습니다. p

Hyunwoong Ko 58 Dec 07, 2022
Code associated with the Don't Stop Pretraining ACL 2020 paper

dont-stop-pretraining Code associated with the Don't Stop Pretraining ACL 2020 paper Citation @inproceedings{dontstoppretraining2020, author = {Suchi

AI2 449 Jan 04, 2023
Partially offline multi-language translator built upon Huggingface transformers.

Translate Command-line interface to translation pipelines, powered by Huggingface transformers. This tool can download translation models, and then us

Richard Jarry 8 Oct 25, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 881 Jan 03, 2023
🏖 Easy training and deployment of seq2seq models.

Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear

Axel Springer Ideas Engineering GmbH 231 Nov 18, 2022
Finally decent dictionaries based on Wiktionary for your beloved eBook reader.

eBook Reader Dictionaries Finally, decent dictionaries based on Wiktionary for your beloved eBook reader. Dictionaries Catalan 🚧 Ελληνικά (help welco

Mickaël Schoentgen 163 Dec 31, 2022
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
Code for using and evaluating SpanBERT.

SpanBERT This repository contains code and models for the paper: SpanBERT: Improving Pre-training by Representing and Predicting Spans. If you prefer

Meta Research 798 Dec 30, 2022
Edge-Augmented Graph Transformer

Edge-augmented Graph Transformer Introduction This is the official implementation of the Edge-augmented Graph Transformer (EGT) as described in https:

Md Shamim Hussain 21 Dec 14, 2022
Word Bot for JKLM Bomb Party

Word Bot for JKLM Bomb Party A bot for Bomb Party on https://www.jklm.fun (Only English) Requirements pynput pyperclip pyautogui Usage: Step 1: Run th

Nicolas 7 Oct 30, 2022
Translates basic English sentences into the Huna language (hoo-NAH)

huna-translator The Huna Language Translates basic English sentences into the Huna language (hoo-NAH). The Huna constructed language was developed in

Miles Smith 0 Jan 20, 2022
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
Yes it's true :broken_heart:

Information WARNING: No longer hosted If you would like to be on this repo's readme simply fork or star it! Forks 1 - Flowzii 2 - Errorcrafter 3 - vk-

Dropout 66 Dec 31, 2022
Graph Coloring - Weighted Vertex Coloring Problem

Graph Coloring - Weighted Vertex Coloring Problem This project proposes several local searches and an MCTS algorithm for the weighted vertex coloring

Cyril 1 Jul 08, 2022
Prithivida 690 Jan 04, 2023