topic modeling on unstructured data in Space news articles retrieved from the Guardian (UK) newspaper using API

Overview

NLP Space News Topic Modeling

Photos by nasa.gov (1, 2, 3, 4, 5) and extremetech.com

Binder Open In Colab nbviewer pre-commit CI CodeQL License: MIT OpenSource Code style: black prs-welcome pyup

Table of Contents

  1. Project Idea
  2. Data acquisition
  3. Analysis
  4. Usage
  5. Project Organization

Project Idea

This project aims to learn topics published in Space news from the Guardian (UK) news publication1.

1: articles were also retrieved from the blog Space.com (web scraping), the New York Times (space news from the science section) and from the Hubble Telescope news archive, but these data sources were not used in analysis

Data acquisition

Primary data source

News articles are retrieved using the official API provided by the Guardian.

Supplementary data sources

Data is also acquired from articles published by the Hubble Telescope, the New York Times (US) and blog publication Space.com

Although these articles were acquired, they were not used in analysis.

Data file creation

  1. Use 1_get_list_of_urls.ipynb
    • programmatically retrieves urls from API or archive of publication
    • retrieves metadata such as date and time, section, sub-section, headline/abstract/short summary, etc.
  2. Use 2_scrape_urls.ipynb
    • scrapes news article text from publication url
  3. Use 3_merge_scraped_and_filter.ipynb
    • merge metadata (1_get_list_of_urls.ipynb) with scraped article text (2_scrape_urls.ipynb)

Analysis

Analysis will be performed using an un-supervised learning model. Details are included in the 8_gensim_coherence_nlp_trials_v3.ipynb notebook in the root directory.

Usage

  1. Clone this repository
    $ git clone
  2. Create Python virtual environment, install packages and launch interactive Python platform
    $ make build
  3. Run notebooks in the following order
    • 3_merge_scraped_and_filter.ipynb (view) (covers data from the Hubble news feed, New York Times and Space.com)
      • merge multiple files of articles text data retrieved from news publications API or archive
      • filter out articles of less than 500 words
      • export to *.csv file for use in unsupervised machine learning models
    • 8_gensim_coherence_nlp_trials_v3.ipynb (view) (does not cover data from the Hubble news feed, New York Times and Space.com)
      • experiments in selecting number of topics using
        • coherence score from built-in coherence model to score Gensim's NMF
        • sklearn's implementation of TFIDF + NMF, using best number of topics found using Gensim's NMF
      • manually reading articles that NMF associates with each topic
    • 9_nlp_workflow.ipynb (view)
      • code-only version of 9_gensim_coherence_nlp_trials_v3.ipynb, with necessary considerations for deployment of topic model

Project Organization

├── .pre-commit-config.yaml       <- configuration file for pre-commit hooks
├── .github
│   ├── workflows
│       └── integrate.yml         <- configuration file for Github Actions
├── LICENSE
├── environment.yml               <- configuration file to create environment to run project on Binder
├── Makefile                      <- Makefile with commands like `make lint` or `make build`
├── README.md                     <- The top-level README for developers using this project.
├── app
│   ├── data                      <- data exported from training topic modeler, for use with API
|   └── tests                     <- Source code for use in API tests
|       ├── test-logs             <- Reports from running unit tests on API
|       └── testing_utils         <- Source code for use in unit tests
|           └── *.py              <- Scripts to use in testing API routes
|       ├── __init__.py           <- Allows Python modules to be imported from testing_utils
|       └── test_api.py           <- Unit tests for API
├── api.py                        <- Defines API routes
├── pytest.ini                    <- Test configuration
├── requirements.txt              <- Packages required to run and test API
├── s*,t*.py                      <- Scripts to use in defining API routes
├── data
│   ├── raw                       <- raw data retrieved from news publication
|   └── processed                 <- merged and filtered data
├── executed-notebooks            <- Notebooks with output.
├── *.ipynb                       <- Jupyter notebooks. Naming convention is a number (for ordering),
│                                    and a short `-` delimited description
├── requirements.txt              <- packages required to execute all Jupyter notebooks interactively (not from CI)
├── setup.py                      <- makes project pip installable (pip install -e .) so `src` can be imported
├── src                           <- Source code for use in this project.
│   ├── __init__.py               <- Makes src a Python module
│   └── *.py                      <- Scripts to use in analysis for pre-processing, training, etc.
├── papermill_runner.py           <- Python functions that execute system shell commands.
└── tox.ini                       <- tox file with settings for running tox; see tox.testrun.org

Project based on the cookiecutter data science project template. #cookiecutterdatascience

Owner
edesz
edesz
DeepSpeech - Easy-to-use Speech Toolkit including SOTA ASR pipeline, influential TTS with text frontend and End-to-End Speech Simultaneous Translation.

(简体中文|English) Quick Start | Documents | Models List PaddleSpeech is an open-source toolkit on PaddlePaddle platform for a variety of critical tasks i

5.6k Jan 03, 2023
MMDA - multimodal document analysis

MMDA - multimodal document analysis

AI2 75 Jan 04, 2023
Predict an emoji that is associated with a text

Sentiment Analysis Sentiment analysis in computational linguistics is a general term for techniques that quantify sentiment or mood in a text. Can you

Tetsumichi(Telly) Umada 30 Sep 07, 2022
Contract Understanding Atticus Dataset

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
German Text-To-Speech Engine using Tacotron and Griffin-Lim

jotts JoTTS is a German text-to-speech engine using tacotron and griffin-lim. The synthesizer model has been trained on my voice using Tacotron1. Due

padmalcom 6 Aug 28, 2022
Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing

Trankit: A Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing Trankit is a light-weight Transformer-based Pyth

652 Jan 06, 2023
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
Kinky furry assitant based on GPT2

KinkyFurs-V0 Kinky furry assistant based on GPT2 How to run python3 V0.py then, open web browser and go to localhost:8080 Requirements: Flask trans

Sparki 1 Jun 11, 2022
KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark.

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
HF's ML for Audio study group

Hugging Face Machine Learning for Audio Study Group Welcome to the ML for Audio Study Group. Through a series of presentations, paper reading and disc

Vaibhav Srivastav 110 Jan 01, 2023
Chinese Named Entity Recognization (BiLSTM with PyTorch)

BiLSTM-CRF for Name Entity Recognition PyTorch version A PyTorch implemention of Bi-LSTM-CRF model for Chinese Named Entity Recognition. 使用 PyTorch 实现

5 Jun 01, 2022
ConvBERT-Prod

ConvBERT 目录 0. 仓库结构 1. 简介 2. 数据集和复现精度 3. 准备数据与环境 3.1 准备环境 3.2 准备数据 3.3 准备模型 4. 开始使用 4.1 模型训练 4.2 模型评估 4.3 模型预测 5. 模型推理部署 5.1 基于Inference的推理 5.2 基于Serv

yujun 7 Apr 08, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
XLNet: Generalized Autoregressive Pretraining for Language Understanding

Introduction XLNet is a new unsupervised language representation learning method based on a novel generalized permutation language modeling objective.

Zihang Dai 6k Jan 07, 2023
Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021.

capbot-siic Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021. Problem Inspiration A plethora

Aryan Kargwal 19 Feb 17, 2022
[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021

Compact Transformers Preprint Link: Escaping the Big Data Paradigm with Compact Transformers By Ali Hassani[1]*, Steven Walton[1]*, Nikhil Shah[1], Ab

SHI Lab 367 Dec 31, 2022
A simple Streamlit App to classify swahili news into different categories.

Swahili News Classifier Streamlit App A simple app to classify swahili news into different categories. Installation Install all streamlit requirements

Davis David 4 May 01, 2022
Honor's thesis project analyzing whether the GPT-2 model can more effectively generate free-verse or structured poetry.

gpt2-poetry The following code is for my senior honor's thesis project, under the guidance of Dr. Keith Holyoak at the University of California, Los A

Ashley Kim 2 Jan 09, 2022
無料で使える中品質なテキスト読み上げソフトウェア、VOICEVOXの音声合成エンジン

VOICEVOX ENGINE VOICEVOXの音声合成エンジン。 実態は HTTP サーバーなので、リクエストを送信すればテキスト音声合成できます。 API ドキュメント VOICEVOX ソフトウェアを起動した状態で、ブラウザから

Hiroshiba 3 Jul 05, 2022