fastai ulmfit - Pretraining the Language Model, Fine-Tuning and training a Classifier

Overview

fast.ai ULMFiT with SentencePiece from pretraining to deployment

Motivation: Why even bother with a non-BERT / Transformer language model? Short answer: you can train a state of the art text classifier with ULMFiT with limited data and affordable hardware. The whole process (preparing the Wikipedia dump, pretrain the language model, fine tune the language model and training the classifier) takes about 5 hours on my workstation with a RTX 3090. The training of the model with FP16 requires less than 8 GB VRAM - so you can train the model on affordable GPUs.

I also saw this paper on the roadmap for fast.ai 2.3 Single Headed Attention RNN: Stop Thinking With Your Head which could improve the performance further.

This Repo is based on:

Pretrained models

Language (local) code Perplexity Vocab Size Tokenizer Download (.tgz files)
German Deutsch de 16.1 15k SP https://bit.ly/ulmfit-dewiki
German Deutsch de 18.5 30k SP https://bit.ly/ulmfit-dewiki-30k
Dutch Nederlands nl 20.5 15k SP https://bit.ly/ulmfit-nlwiki
Russian Русский ru 29.8 15k SP https://bit.ly/ulmfit-ruwiki
Portuguese Português pt 17.3 15k SP https://bit.ly/ulmfit-ptwiki
Vietnamese Tiếng Việt vi 18.8 15k SP https://bit.ly/ulmfit-viwiki
Japanese 日本語 ja 42.6 15k SP https://bit.ly/ulmfit-jawiki
Italian Italiano it 23.7 15k SP https://bit.ly/ulmfit-itwiki
Spanish Español es 21.9 15k SP https://bit.ly/ulmfit-eswiki
Korean 한국어 ko 39.6 15k SP https://bit.ly/ulmfit-kowiki
Thai ไทย th 56.4 15k SP https://bit.ly/ulmfit-thwiki
Hebrew עברית he 46.3 15k SP https://bit.ly/ulmfit-hewiki
Arabic العربية ar 50.0 15k SP https://bit.ly/ulmfit-arwiki
Mongolian Монгол mn see: Github: RobertRitz

Download with wget

# to preserve the filenames (.tgz!) when downloading with wget use --content-disposition
wget --content-disposition https://bit.ly/ulmfit-dewiki 

Usage of pretrained models - library fastai_ulmfit.pretrained

I've written a small library around this repo, to easily use the pretrained models. You don't have to bother with model, vocab and tokenizer files and paths - the following functions will take care of that.

Tutorial: fastai_ulmfit_pretrained_usage.ipynb Open In Colab

Installation

pip install fastai-ulmfit

Usage

# import
from fastai_ulmfit.pretrained import *

url = 'http://bit.ly/ulmfit-dewiki'

# get tokenizer - if pretrained=True, the SentencePiece Model used for language model pretraining will be used. Default: False 
tok = tokenizer_from_pretrained(url, pretrained=False)

# get language model learner for fine-tuning
learn = language_model_from_pretrained(dls, url=url, drop_mult=0.5).to_fp16()

# save fine-tuned model for classification
path = learn.save_lm('tmp/test_lm')

# get text classifier learner from fine-tuned model
learn = text_classifier_from_lm(dls, path=path, metrics=[accuracy]).to_fp16()

Extract Sentence Embeddings

from fastai_ulmfit.embeddings import SentenceEmbeddingCallback

se = SentenceEmbeddingCallback(pool_mode='concat')
_ = learn.get_preds(cbs=[se])

feat = se.feat
pca = PCA(n_components=2)
pca.fit(feat['vec'])
coords = pca.transform(feat['vec'])

Model pretraining

Setup

Python environment

fastai-2.2.7
fastcore-1.3.19
sentencepiece-0.1.95
fastinference-0.0.36

Install packages pip install -r requirements.txt

The trained language models are compatible with other fastai versions!

Docker

The Wikipedia-dump preprocessing requires docker https://docs.docker.com/get-docker/.

Project structure

.
├── we                         Docker image for the preperation of the Wikipedia-dump / wikiextractor
└── data          
    └── {language-code}wiki         
        ├── dump                    downloaded Wikipedia dump
        │   └── extract             extracted wikipedia-articles using wikiextractor
        ├── docs 
        │   ├── all                 all extracted Wikipedia articles as single txt-files
        │   ├── sampled             sampled Wikipedia articles for language model pretraining
        │   └── sampled_tok         cached tokenized sampled articles - created by fastai / sentencepiece
        └── model 
            ├── lm                  language model trained in step 2
            │   ├── fwd             forward model
            │   ├── bwd             backwards model
            │   └── spm             SentencePiece model
            │
            ├── ft                  fine tuned model trained in step 3
            │   ├── fwd             forward model
            │   ├── bwd             backwards model
            │   └── spm             SentencePiece model
            │
            └── class               classifier trained in step 4
                ├── fwd             forward learner
                └── bwd             backwards learner

1. Prepare Wikipedia-dump for pretraining

ULMFiT can be peretrained on relativly small datasets - 100 million tokens are sufficient to get state-of-the art classification results (compared to Transformer models as BERT, which need huge amounts of training data). The easiest way is to pretrain a language model on Wikipedia.

The code for the preperation steps is heavily inspired by / copied from the fast.ai NLP-course: https://github.com/fastai/course-nlp/blob/master/nlputils.py

I built a docker container and script, that automates the following steps:

  1. Download Wikipedia XML-dump
  2. Extract the text from the dump
  3. Sample 160.000 documents with a minimum length of 1800 characters (results in 100m-120m tokens) both parameters can be changed - see the usage below

The whole process will take some time depending on the download speed and your hardware. For the 'dewiki' the preperation took about 45 min.

Run the following commands in the current directory

# build the wikiextractor docker file
docker build -t wikiextractor ./we

# run the docker container for a specific language
# docker run -v $(pwd)/data:/data -it wikiextractor -l <language-code> 
# for German language-code de run:
docker run -v $(pwd)/data:/data -it wikiextractor -l de
...
sucessfully prepared dewiki - /data/dewiki/docs/sampled, number of docs 160000/160000 with 110699119 words / tokens!

# To change the number of sampled documents or the minimum length see
usage: preprocess.py [-h] -l LANG [-n NUMBER_DOCS] [-m MIN_DOC_LENGTH] [--mirror MIRROR] [--cleanup]

# To cleanup indermediate files (wikiextractor and all splitted documents) run the following command. 
# The Wikipedia-XML-Dump and the sampled docs will not be deleted!
docker run -v $(pwd)/data:/data -it wikiextractor -l <language-code> --cleanup

2. Language model pretraining on Wikipedia Dump

Notebook: 2_ulmfit_lm_pretraining.ipynb

To get the best result, you can train two seperate language models - a forward and a backward model. You'll have to run the complete notebook twice and set the backwards parameter accordingly. The models will be saved in seperate folders (fwd / bwd). The same applies to fine-tuning and training of the classifier.

Parameters

Change the following parameters according to your needs:

lang = 'de' # language of the Wikipedia-Dump
backwards = False # Train backwards model? Default: False for forward model
bs=128 # batch size
vocab_sz = 15000 # vocab size - 15k / 30k work fine with sentence piece
num_workers=18 # num_workers for the dataloaders
step = 'lm' # language model - don't change

Training Logs + config

model.json contains the parameters the language model was trained with and the statistics (looses and metrics) of the last epoch

{
    "lang": "de",
    "step": "lm",
    "backwards": false,
    "batch_size": 128,
    "vocab_size": 15000,
    "lr": 0.01,
    "num_epochs": 10,
    "drop_mult": 0.5,
    "stats": {
        "train_loss": 2.894167184829712,
        "valid_loss": 2.7784812450408936,
        "accuracy": 0.46221256256103516,
        "perplexity": 16.094558715820312
    }
}

history.csv log of the training metrics (epochs, losses, accuracy, perplexity)

epoch,train_loss,valid_loss,accuracy,perplexity,time
0,3.375441551208496,3.369227886199951,0.3934227228164673,29.05608367919922,23:00
...
9,2.894167184829712,2.7784812450408936,0.46221256256103516,16.094558715820312,22:44

3. Language model fine-tuning on unlabled data

Notebook: 3_ulmfit_lm_finetuning.ipynb

To improve the performance on the downstream-task, the language model should be fine-tuned. We are using a Twitter dataset (GermEval2018/2019), so we fine-tune the LM on unlabled tweets.

To use the notebook on your own dataset, create a .csv-file containing your (unlabled) data in the text column.

Files required from the Language Model (previous step):

  • Model (*model.pth)
  • Vocab (*vocab.pkl)

I am not reusing the SentencePiece-Model from the language model! This could lead to slightly different tokenization but fast.ai (-> language_model_learner()) and the fine-tuning takes care of adding and training unknown tokens! This approch gave slightly better results than reusing the SP-Model from the language model.

4. Train the classifier

Notebook: 4_ulmfit_train_classifier.ipynb

The (fine-tuned) language model now can be used to train a classifier on a (small) labled dataset.

To use the notebook on your own dataset, create a .csv-file containing your texts in the text and labels in the label column.

Files required from the fine-tuned LM (previous step):

  • Encoder (*encoder.pth)
  • Vocab (*vocab.pkl)
  • SentencePiece-Model (spm/spm.model)

5. Use the classifier for predictions / inference on new data

Notebook: 5_ulmfit_inference.ipynb

Evaluation

German pretrained model

Results with an ensemble of forward + backward model (see the inference notebook). Neither the fine-tuning of the LM, nor the training of the classifier was optimized - so there is still room for improvement.

Official results: https://ids-pub.bsz-bw.de/frontdoor/deliver/index/docId/9319/file/Struss_etal._Overview_of_GermEval_task_2_2019.pdf

Task 1 Coarse Classification

Classes: OTHER, OFFENSE

Accuracy: 79,68 F1: 75,96 (best BERT 76,95)

Task 2 Fine Classification

Classes: OTHER, PROFANITY, INSULT, ABUSE

Accuracy: 74,56 % F1: 52,54 (best BERT 53.59)

Dutch model

Compared result with: https://arxiv.org/pdf/1912.09582.pdf
Dataset https://github.com/benjaminvdb/DBRD

Accuracy 93,97 % (best BERT 93,0 %)

Japanese model

Copared results with:

Livedoor news corpus
Accuracy 97,1% (best BERT ~98 %)

Korean model

Compared with: https://github.com/namdori61/BERT-Korean-Classification Dataset: https://github.com/e9t/nsmc Accuracy 89,6 % (best BERT 90,1 %)

Deployment as REST-API

see https://github.com/floleuerer/fastai-docker-deploy

.

End-to-end image captioning with EfficientNet-b3 + LSTM with Attention

Image captioning End-to-end image captioning with EfficientNet-b3 + LSTM with Attention Model is seq2seq model. In the encoder pretrained EfficientNet

2 Feb 10, 2022
Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Yu Zhang 50 Nov 08, 2022
ASCEND Chinese-English code-switching dataset

ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong.

CAiRE 11 Dec 09, 2022
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Kundan Krishna 6 Jun 04, 2021
Natural Language Processing Best Practices & Examples

NLP Best Practices In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive bus

Microsoft 6.1k Dec 31, 2022
voice2json is a collection of command-line tools for offline speech/intent recognition on Linux

Command-line tools for speech and intent recognition on Linux

Michael Hansen 988 Jan 04, 2023
Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speech Enhancement

MTFAA-Net Unofficial PyTorch implementation of Baidu's MTFAA-Net: "Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speec

Shimin Zhang 87 Dec 19, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

Maksim Terpilowski 49 Dec 30, 2022
Signature remover is a NLP based solution which removes email signatures from the rest of the text.

Signature Remover Signature remover is a NLP based solution which removes email signatures from the rest of the text. It helps to enchance data conten

Forges Alterway 8 Jan 06, 2023
CLIPfa: Connecting Farsi Text and Images

CLIPfa: Connecting Farsi Text and Images OpenAI released the paper Learning Transferable Visual Models From Natural Language Supervision in which they

Sajjad Ayoubi 66 Dec 14, 2022
EasyTransfer is designed to make the development of transfer learning in NLP applications easier.

EasyTransfer is designed to make the development of transfer learning in NLP applications easier. The literature has witnessed the success of applying

Alibaba 819 Jan 03, 2023
CCKS-Title-based-large-scale-commodity-entity-retrieval-top1

- 基于标题的大规模商品实体检索top1 一、任务介绍 CCKS 2020:基于标题的大规模商品实体检索,任务为对于给定的一个商品标题,参赛系统需要匹配到该标题在给定商品库中的对应商品实体。 输入:输入文件包括若干行商品标题。 输出:输出文本每一行包括此标题对应的商品实体,即给定知识库中商品 ID,

43 Nov 11, 2022
Labelling platform for text using distant supervision

With DataQA, you can label unstructured text documents using rule-based distant supervision.

245 Aug 05, 2022
NL. The natural language programming language.

NL A Natural-Language programming language. Built using Codex. A few examples are inside the nl_projects directory. How it works Write any code in pur

2 Jan 17, 2022
PIZZA - a task-oriented semantic parsing dataset

The PIZZA dataset continues the exploration of task-oriented parsing by introducing a new dataset for parsing pizza and drink orders, whose semantics cannot be captured by flat slots and intents.

17 Dec 14, 2022
CATs: Semantic Correspondence with Transformers

CATs: Semantic Correspondence with Transformers For more information, check out the paper on [arXiv]. Training with different backbones and evaluation

74 Dec 10, 2021
In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a model using HugginFace transformers framework.

Transformers are all you need In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a

Aymen Berriche 8 Apr 13, 2022
File-based TF-IDF: Calculates keywords in a document, using a word corpus.

File-based TF-IDF Calculates keywords in a document, using a word corpus. Why? Because I found myself with hundreds of plain text files, with no way t

Jakob Lindskog 1 Feb 11, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022