Python3 to Crystal Translation using Python AST Walker

Related tags

Text Data & NLPpy2cr
Overview

py2cr.py

A code translator using AST from Python to Crystal. This is basically a NodeVisitor with Crystal output. See AST documentation (https://docs.python.org/3/library/ast.html) for more information.

Status

Currently more than 80% of the relevant tests are passing. See more information below.

Installation

Execute the following:

pip install py2cr

or

git clone git://github.com/nanobowers/py2cr.git

Versions

  • Python 3.6 .. 3.9
  • Crystal 1.1+

Dependencies

Python

pip install pyyaml

# Probably not needed for much longer since py2 support is going to be removed.
pip install six 

# Probably not really needed since there is no crystal equivalent
pip install numpy

Crystal

currently there are no external dependencies

Methodology

In addition to walking and writing the AST tree and writing a Crystal syntax output, this tool either:

  • Monkey-patches some common Crystal stdlib Structs/Classes in order to emulate the Python equivalent functionality.
  • Calls equivalent Crystal methods to the Python equivalent
  • Calls wrapped Crystal methods that provide Python equivalent functionality

Usage

Generally, py2cr.py somefile.py > somefile.cr

There is a Crystal shim/wrapper library in src/py2cr (and linked into lib/py2cr) that is also referenced in the generated script. You may need to copy that as needed, though eventually it may be appropriate to convert it to a shard if that is more appropriate.

Example

TODO

Tests

$ ./run_tests.py

Will run all tests that are supposed to work. If any test fails, its a bug. (Currently there are a lot of failing tests!!)

$ ./run_tests.py -a

Will run all tests including those that are known to fail (currently). It should be understandable from the output.

$ ./run_tests.py basic

Will run all tests matching basic. Useful because running the entire test-suite can take a while.

$ ./run_tests.py -x or $ ./run_tests.py --no-error

Will run tests but ignore if an error is raised by the test. This is not affecting the error generated by the test files in the tests directory.

For additional information on flags, run:

./run_tests.py -h

Writing new tests

Adding tests for most new or existing functionality involves adding additional python files at tests/ .py .

The test-runner scripts will automatically run py2cr to produce a Crystal script, then run both the Python and Crystal scripts, then compare stdout/stderr and check return codes.

For special test-cases, it is possible to provide a configuration YAML file on a per test basis named tests/ / .config.yaml which overrides defaults for testing. The following keys/values are supported:

min_python_version: [int, int] # minimum major/minor version
max_python_version: [int, int] # maximum major/minor version
expected_exit_status: int      # exit status for py/cr test script
argument_list: [str, ... str]  # list of strings as extra args for argv

Typing

Some amount of typing support in Python is translated to Crystal. Completely untyped Python code in many cases will not be translatable to compilable Crystal. Rudimentary for python Optional and Union should convert appropriately to Crystal typing.

Some inference of bare list/dict types can now convert to [] of X and {} of X, however set and tuple may not work properly.

Status

This is incomplete and many of the tests brought forward from py2rb do not pass. Some of them may never pass as-is due to significant language / compilation differences (even moreso than Python vs. Ruby)

To some extent, it will always be incomplete. The goal is to cover common cases and reduce the additional work to minimum-viable-program.

Limitations

  • Many Python run-time exceptions are not translatable into Crystal as these issues manifest in Crystal as compile-time errors.
  • A significant portion of python code is untyped and may not translate properly in places where Crystal demands type information.
    • e.g. Crystal Lambda function parameters require typing and this is very uncommon in Python, though may be possible with Callable[] on the python side.
  • Python importing is significantly different than Crystal and thus may not ever map well.
  • Numpy and Unittest which are common in Python don't have equivalents in Crystal. With some significant additional work, converting tests into Spec format may be possible via https://github.com/jaredbeck/minitest_to_rspec as a guide

To-do

  • Remove python2/six dependencies to reduce clutter. Py2 has been end-of-lifed for a while now.
  • Remove numpy dependencies unless/until a suitable target for Crystal can be identified
  • Add additional Crystal shim methods to translate common python3 stdlib methods. Consider a mode that just maps to a close Crystal method rather than using a shim-method to reduce the python-ness.
  • Refactor the code-base. Most of it is in the __init__.py
  • Add additional unit-tests
  • Multi-thread the test-suite so it can run faster.

Contribute

Free to submit an issue. This is very much a work in progress, contributions or constructive feedback is welcome.

If you'd like to hack on py2cr, start by forking the repo on GitHub:

https://github.com/nanobowers/py2cr

Contributing

The best way to get your changes merged back into core is as follows:

  1. Fork it (https://github.com/nanobowers/py2cr/fork)
  2. Create a thoughtfully named topic branch to contain your change (git checkout -b my-new-feature)
  3. Hack away
  4. Add tests and make sure everything still passes by running crystal spec
  5. If you are adding new functionality, document it in the README
  6. If necessary, rebase your commits into logical chunks, without errors
  7. Commit your changes (git commit -am 'Add some feature')
  8. Push to the branch (git push origin my-new-feature)
  9. Create a new Pull Request

License

MIT, see the LICENSE file for exact details.

A list of NLP(Natural Language Processing) tutorials built on Tensorflow 2.0.

A list of NLP(Natural Language Processing) tutorials built on Tensorflow 2.0.

Won Joon Yoo 335 Jan 04, 2023
Easy-to-use CPM for Chinese text generation

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

382 Jan 07, 2023
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

Bethge Lab 61 Dec 21, 2022
Graph Coloring - Weighted Vertex Coloring Problem

Graph Coloring - Weighted Vertex Coloring Problem This project proposes several local searches and an MCTS algorithm for the weighted vertex coloring

Cyril 1 Jul 08, 2022
A python gui program to generate reddit text to speech videos from the id of any post.

Reddit text to speech generator A python gui program to generate reddit text to speech videos from the id of any post. Current functionality Generate

Aadvik 17 Dec 19, 2022
TTS is a library for advanced Text-to-Speech generation.

TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to achieve the best trade-off among ease-of-training, speed and quality. TTS comes with pretra

Mozilla 6.5k Jan 08, 2023
This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini!

About CappuccinoJs This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini! Este conversor criar

Arthur Ottoni Ribeiro 48 Nov 15, 2022
Generate vector graphics from a textual caption

VectorAscent: Generate vector graphics from a textual description Example "a painting of an evergreen tree" python text_to_painting.py --prompt "a pai

Ajay Jain 97 Dec 15, 2022
Twitter Sentiment Analysis using #tag, words and username

Twitter Sentment Analysis Web App using #tag, words and username to fetch data finds Insides of data and Tells Sentiment of the perticular #tag, words or username.

Kumar Saksham 26 Dec 25, 2022
NeurIPS'21: Probabilistic Margins for Instance Reweighting in Adversarial Training (Pytorch implementation).

source code for NeurIPS21 paper robabilistic Margins for Instance Reweighting in Adversarial Training

9 Dec 20, 2022
Text-to-Speech for Belarusian language

title emoji colorFrom colorTo sdk app_file pinned Belarusian TTS 🐸 green green gradio app.py false Belarusian TTS 📢 🤖 Belarusian TTS (text-to-speec

Yurii Paniv 1 Nov 27, 2021
A multi-lingual approach to AllenNLP CoReference Resolution along with a wrapper for spaCy.

Crosslingual Coreference Coreference is amazing but the data required for training a model is very scarce. In our case, the available training for non

Pandora Intelligence 71 Jan 04, 2023
In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset.

Med-VQA In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset. Two of these are made on top of Facebook AI Reasearch's Multi-Mo

Kshitij Ambilduke 8 Apr 14, 2022
Application for shadowing Chinese.

chinese-shadowing Simple APP for shadowing chinese. With this application, it is very easy to record yourself, play the sound recorded and listen to s

Thomas Hirtz 5 Sep 06, 2022
MiCECo - Misskey Custom Emoji Counter

MiCECo Misskey Custom Emoji Counter Introduction This little script counts custo

7 Dec 25, 2022
This code is the implementation of Text Emotion Recognition (TER) with linguistic features

APSIPA-TER This code is the implementation of Text Emotion Recognition (TER) with linguistic features. The network model is BERT with a pretrained mod

kenro515 1 Feb 08, 2022
wxPython app for converting encodings, modifying and fixing SRT files

Subtitle Converter Program za obradu srt i txt fajlova. Requirements: Python version 3.8 wxPython version 4.1.0 or newer Libraries: srt, PyDispatcher

4 Nov 25, 2022
Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors"

SWRM Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors" Clone Clone th

14 Jan 03, 2023
Edge-Augmented Graph Transformer

Edge-augmented Graph Transformer Introduction This is the official implementation of the Edge-augmented Graph Transformer (EGT) as described in https:

Md Shamim Hussain 21 Dec 14, 2022
Finding Label and Model Errors in Perception Data With Learned Observation Assertions

Finding Label and Model Errors in Perception Data With Learned Observation Assertions This is the project page for Finding Label and Model Errors in P

Stanford Future Data Systems 17 Oct 14, 2022