The tool to make NLP datasets ready to use

Overview

chazutsu

chazutsu_top.PNG
photo from Kaikado, traditional Japanese chazutsu maker

PyPI version Build Status codecov

chazutsu is the dataset downloader for NLP.

>>> import chazutsu
>>> r = chazutsu.datasets.IMDB().download()
>>> r.train_data().head(5)

Then

   polarity  rating                                             review
0         0       3  You'd think the first landing on the Moon woul...
1         1       9  I took a flyer in renting this movie but I got...
2         1      10  Sometimes I just want to laugh. Don't you? No ...
3         0       2  I knew it wasn't gunna work out between me and...
4         0       2  Sometimes I rest my head and think about the r...

You can use chazutsu on Jupyter.

Install

pip install chazutsu

Supported datasetd

chazutsu supports various kinds of datasets!
Please see the details here!

  • Sentiment Analysis
    • Movie Review Data
    • Customer Review Datasets
    • Large Movie Review Dataset(IMDB)
  • Text classification
    • 20 Newsgroups
    • Reuters News Courpus (RCV1-v2)
  • Language Modeling
    • Penn Tree Bank
    • WikiText-2
    • WikiText-103
    • text8
  • Text Summarization
    • DUC2003
    • DUC2004
    • Gigaword
  • Textual entailment
    • The Multi-Genre Natural Language Inference (MultiNLI)
  • Question Answering
    • The Stanford Question Answering Dataset (SQuAD)

How it works

chazutsu not only download the dataset, but execute expand archive file, shuffle, split, picking samples process also (You can disable the process by arguments if you don't need).

chazutsu_process1.png

r = chazutsu.datasets.MovieReview.polarity(shuffle=False, test_size=0.3, sample_count=100).download()
  • shuffle: The flag argument for executing shuffle or not(True/False).
  • test_size: The ratio of the test dataset (If dataset already prepares train and test dataset, this value is ignored).
  • sample_count: You can pick some samples from the dataset to avoid the editor freeze caused by the heavy text file.
  • force: Don't use cache, re-download the dataset.

chazutsu supports fundamental process for tokenization.

chazutsu_process2.png

>>> import chazutsu
>>> r = chazutsu.datasets.MovieReview.subjectivity().download()
>>> r.train_data().head(3)

Then

    subjectivity                                             review
0             0  . . . works on some levels and is certainly wo...
1             1  the hulk is an anger fueled monster with incre...
2             1  when the skittish emma finds blood on her pill...

Now we want to convert this data to train various frameworks.

fixed_len = 10
r.make_vocab(vocab_size=1000)
r.column("review").as_word_seq(fixed_len=fixed_len)
X, y = r.to_batch("train")
assert X.shape == (len(y), fixed_len, len(r.vocab))
assert y.shape == (len(y), 1)
  • make_vocab
    • vocab_resources: resources to make vocabulary ("train", "valid", "test")
    • columns_for_vocab: The columns to make vocabulary
    • tokenizer: Tokenizer
    • vocab_size: Vocacbulary size
    • min_word_freq: Minimum word count to include the vocabulary
    • unknown: The tag used for out of vocabulary word
    • padding: The tag used to pad the sequence
    • end_of_sentence: If you want to clarify the end-of-line by specific tag, then use this.
    • reserved_words: The word that should included in vocabulary (ex. tag for padding)
    • force: Don't use cache, re-create the dataset.

If you don't want to load all the training data? You can use to_batch_iter.

Additional Feature

Use on Jupyter

You can use chazutsu on Jupyter Notebook.

on_jupyter.png

Before you execute chazutsu on Jupyter, you have to enable widget extention by below command.

jupyter nbextension enable --py --sys-prefix widgetsnbextension
Bpe algorithm can finetune tokenizer - Bpe algorithm can finetune tokenizer

"# bpe_algorithm_can_finetune_tokenizer" this is an implyment for https://github

张博 1 Feb 02, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

286 Jan 02, 2023
OceanScript is an Esoteric language used to encode and decode text into a formulation of characters

OceanScript is an Esoteric language used to encode and decode text into a formulation of characters - where the final result looks like waves in the ocean.

Text classification is one of the popular tasks in NLP that allows a program to classify free-text documents based on pre-defined classes.

Deep-Learning-for-Text-Document-Classification Text classification is one of the popular tasks in NLP that allows a program to classify free-text docu

Happy N. Monday 2 Mar 17, 2022
DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)

DANeS - Open-source E-newspaper dataset Source: Technology vector created by macrovector - www.freepik.com. DANeS is an open-source E-newspaper datase

DATASET .JSC 64 Aug 17, 2022
Tools for curating biomedical training data for large-scale language modeling

Tools for curating biomedical training data for large-scale language modeling

BigScience Workshop 242 Dec 25, 2022
Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Tokenizer Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code e

Manolo 1 Aug 15, 2022
Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

CIRPLANT This repository contains the code and pre-trained models for Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT) For d

Zheyuan (David) Liu 29 Nov 17, 2022
Source code for the paper "TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations"

TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations Created by Jiahao Pang, Duanshun Li, and Dong Tian from InterDigital In

InterDigital 21 Dec 29, 2022
Fidibo.com comments Sentiment Analyser

Fidibo.com comments Sentiment Analyser Introduction This project first asynchronously grab Fidibo.com books comment data using grabber.py and then sav

Iman Kermani 3 Apr 15, 2022
Python generation script for BitBirds

BitBirds generation script Intro This is published under MIT license, which means you can do whatever you want with it - entirely at your own risk. Pl

286 Dec 06, 2022
Header-only C++ HNSW implementation with python bindings

Hnswlib - fast approximate nearest neighbor search Header-only C++ HNSW implementation with python bindings. NEWS: version 0.6 Thanks to (@dyashuni) h

2.3k Jan 05, 2023
FewCLUE: 为中文NLP定制的小样本学习测评基准

FewCLUE: 为中文NLP定制的小样本学习测评基准

CLUE benchmark 387 Jan 04, 2023
test

Lidar-data-decode In this project, you can decode your lidar data frame(pcap file) and make your own datasets(test dataset) in Windows without any hug

46 Dec 05, 2022
Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module.

Import Subtitles for Blender VSE Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module. Supported formats by py

4 Feb 27, 2022
Collection of useful (to me) python scripts for interacting with napari

Napari scripts A collection of napari related tools in various state of disrepair/functionality. Browse_LIF_widget.py This module can be imported, for

5 Aug 15, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Phil Wang 5k Jan 02, 2023
Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data

Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data Authors: Yi-Chang Chen, Yu-Chuan Chang, Yen-Cheng Chang and Yi-Ren Ye

Yi-Chang Chen 5 Dec 15, 2022
Minimal GUI for accessing the Watson Text to Speech service.

Description Minimal graphical application for accessing the Watson Text to Speech service. Requirements Python 3 plus all dependencies listed in requi

Moritz Maxeiner 1 Oct 22, 2021
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022