MPNet: Masked and Permuted Pre-training for Language Understanding

Related tags

Text Data & NLPMPNet
Overview

MPNet

MPNet: Masked and Permuted Pre-training for Language Understanding, by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu, is a novel pre-training method for language understanding tasks. It solves the problems of MLM (masked language modeling) in BERT and PLM (permuted language modeling) in XLNet and achieves better accuracy.

News: We have updated the pre-trained models now.

Supported Features

  • A unified view and implementation of several pre-training models including BERT, XLNet, MPNet, etc.
  • Code for pre-training and fine-tuning for a variety of language understanding (GLUE, SQuAD, RACE, etc) tasks.

Installation

We implement MPNet and this pre-training toolkit based on the codebase of fairseq. The installation is as follow:

pip install --editable pretraining/
pip install pytorch_transformers==1.0.0 transformers scipy sklearn

Pre-training MPNet

Our model is pre-trained with bert dictionary, you first need to pip install transformers to use bert tokenizer. We provide a script encode.py and a dictionary file dict.txt to tokenize your corpus. You can modify encode.py if you want to use other tokenizers (like roberta).

1) Preprocess data

We choose WikiText-103 as a demo. The running script is as follow:

wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip
unzip wikitext-103-raw-v1.zip

for SPLIT in train valid test; do \
    python MPNet/encode.py \
        --inputs wikitext-103-raw/wiki.${SPLIT}.raw \
        --outputs wikitext-103-raw/wiki.${SPLIT}.bpe \
        --keep-empty \
        --workers 60; \
done

Then, we need to binarize data. The command of binarizing data is following:

fairseq-preprocess \
    --only-source \
    --srcdict MPNet/dict.txt \
    --trainpref wikitext-103-raw/wiki.train.bpe \
    --validpref wikitext-103-raw/wiki.valid.bpe \
    --testpref wikitext-103-raw/wiki.test.bpe \
    --destdir data-bin/wikitext-103 \
    --workers 60

2) Pre-train MPNet

The below command is to train a MPNet model:

TOTAL_UPDATES=125000    # Total number of training steps
WARMUP_UPDATES=10000    # Warmup the learning rate over this many updates
PEAK_LR=0.0005          # Peak learning rate, adjust as needed
TOKENS_PER_SAMPLE=512   # Max sequence length
MAX_POSITIONS=512       # Num. positional embeddings (usually same as above)
MAX_SENTENCES=16        # Number of sequences per batch (batch size)
UPDATE_FREQ=16          # Increase the batch size 16x

DATA_DIR=data-bin/wikitext-103

fairseq-train --fp16 $DATA_DIR \
    --task masked_permutation_lm --criterion masked_permutation_cross_entropy \
    --arch mpnet_base --sample-break-mode complete --tokens-per-sample $TOKENS_PER_SAMPLE \
    --optimizer adam --adam-betas '(0.9,0.98)' --adam-eps 1e-6 --clip-norm 0.0 \
    --lr-scheduler polynomial_decay --lr $PEAK_LR --warmup-updates $WARMUP_UPDATES --total-num-update $TOTAL_UPDATES \
    --dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \
    --max-sentences $MAX_SENTENCES --update-freq $UPDATE_FREQ \
    --max-update $TOTAL_UPDATES --log-format simple --log-interval 1 --input-mode 'mpnet'

Notes: You can replace arch with mpnet_rel_base and add command --mask-whole-words --bpe bert to use relative position embedding and whole word mask.

Notes: You can specify --input-mode as mlm or plm to train masked language model or permutation language model.

Pre-trained models

We have updated the final pre-trained MPNet model for fine-tuning.

You can load the pre-trained MPNet model like this:

from fairseq.models.masked_permutation_net import MPNet
mpnet = MPNet.from_pretrained('checkpoints', 'checkpoint_best.pt', 'path/to/data', bpe='bert')
assert isinstance(mpnet.model, torch.nn.Module)

Fine-tuning MPNet on down-streaming tasks

Acknowledgements

Our code is based on fairseq-0.8.0. Thanks for their contribution to the open-source commuity.

Reference

If you find this toolkit useful in your work, you can cite the corresponding papers listed below:

@article{song2020mpnet,
    title={MPNet: Masked and Permuted Pre-training for Language Understanding},
    author={Song, Kaitao and Tan, Xu and Qin, Tao and Lu, Jianfeng and Liu, Tie-Yan},
    journal={arXiv preprint arXiv:2004.09297},
    year={2020}
}

Related Works

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Yet Another Neural Machine Translation Toolkit

YANMTT YANMTT is short for Yet Another Neural Machine Translation Toolkit. For a backstory how I ended up creating this toolkit scroll to the bottom o

Raj Dabre 121 Jan 05, 2023
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

Neural Networks and Deep Learning lab, MIPT 6k Dec 30, 2022
This repository will contain the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 27, 2022
Local cross-platform machine translation GUI, based on CTranslate2

DesktopTranslator Local cross-platform machine translation GUI, based on CTranslate2 Download Windows Installer You can either download a ready-made W

Yasmin Moslem 29 Jan 05, 2023
DaCy: The State of the Art Danish NLP pipeline using SpaCy

DaCy: A SpaCy NLP Pipeline for Danish DaCy is a Danish preprocessing pipeline trained in SpaCy. At the time of writing it has achieved State-of-the-Ar

Kenneth Enevoldsen 71 Jan 06, 2023
用Resnet101+GPT搭建一个玩王者荣耀的AI

基于pytorch框架用resnet101加GPT搭建AI玩王者荣耀 本源码模型主要用了SamLynnEvans Transformer 的源码的解码部分。以及pytorch自带的预训练模型"resnet101-5d3b4d8f.pth"

冯泉荔 2.2k Jan 03, 2023
This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Joseph Imperial 1 Oct 05, 2021
A simple version of DeTR

DeTR-Lite A simple version of DeTR Before you enjoy this DeTR-Lite The purpose of this project is to allow you to learn the basic knowledge of DeTR. P

Jianhua Yang 11 Jun 13, 2022
DAGAN - Dual Attention GANs for Semantic Image Synthesis

Contents Semantic Image Synthesis with DAGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evalu

Hao Tang 104 Oct 08, 2022
SciBERT is a BERT model trained on scientific text.

SciBERT is a BERT model trained on scientific text.

AI2 1.2k Dec 24, 2022
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines

spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t

Kenneth Enevoldsen 32 Dec 29, 2022
Kerberoast with ACL abuse capabilities

targetedKerberoast targetedKerberoast is a Python script that can, like many others (e.g. GetUserSPNs.py), print "kerberoast" hashes for user accounts

Shutdown 213 Dec 22, 2022
EdiTTS: Score-based Editing for Controllable Text-to-Speech

Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

Neosapience 99 Jan 02, 2023
News-Articles-and-Essays - NLP (Topic Modeling and Clustering)

NLP T5 Project proposal Topic Modeling and Clustering of News-Articles-and-Essays Students: Nasser Alshehri Abdullah Bushnag Abdulrhman Alqurashi OVER

2 Jan 18, 2022
Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

SilkyArcTool English Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. I

Tester 5 Sep 15, 2022
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体

ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体,包括上市公司所属行业关系、行业上级关系、产品上游原材料关系、产品下游产品关系、公司主营产品、产品小类共6大类。 上市公司4,654家,行业511个,产品95,559条、上游材料56,824条,上级行业480条,下游产品390条,产品小类52,937条,所属行业3,946条。

liuhuanyong 415 Jan 06, 2023
This is Assignment1 code for the Web Data Processing System.

This is a Python program to Entity Linking by processing WARC files. We recognize entities from web pages and link them to a Knowledge Base(Wikidata).

3 Dec 04, 2022
A unified tokenization tool for Images, Chinese and English.

ICE Tokenizer Token id [0, 20000) are image tokens. Token id [20000, 20100) are common tokens, mainly punctuations. E.g., icetk[20000] == 'unk', ice

THUDM 42 Dec 27, 2022
A Paper List for Speech Translation

Keyword: Speech Translation, Spoken Language Processing, Natural Language Processing

138 Dec 24, 2022