A fast hierarchical dimensionality reduction algorithm.

Related tags

Text Data & NLPh-nne
Overview

h-NNE: Hierarchical Nearest Neighbor Embedding

A fast hierarchical dimensionality reduction algorithm.

h-NNE is a general purpose dimensionality reduction algorithm such as t-SNE and UMAP. It stands out for its speed, simplicity and the fact that it provides a hierarchy of clusterings as part of its projection process. The algorithm is inspired by the FINCH clustering algorithm. For more information on the structure of the algorithm, please look at our corresponding paper in ArXiv:

M. Saquib Sarfraz*, Marios Koulakis*, Constantin Seibold, Rainer Stiefelhagen. Hierarchical Nearest Neighbor Graph Embedding for Efficient Dimensionality Reduction. CVPR 2022.

More details are available in the project documentation.

Installation

The project is available in PyPI. To install run:

pip install hnne

How to use h-NNE

The HNNE class implements the common methods of the sklearn interface.

Simple projection example

import numpy as np
from hnne import HNNE

data = np.random.random(size=(1000, 256))

hnne = HNNE(dim=2)
projection = hnne.fit_transform(data)

Projecting on new points

hnne = HNNE()
projection = hnne.fit_transform(data)

new_data_projection = hnne.transform(new_data)

Demos

The following demo notebooks are available:

  1. Basic Usage
  2. Multiple Projections
  3. Clustering for Free
  4. Monitor Quality of Network Embeddings

Citation

If you make use of this project in your work, it would be appreciated if you cite the hnne paper:

@article{hnne,
  title={Hierarchical Nearest Neighbor Graph Embedding for Efficient Dimensionality Reduction},
  author={M. Saquib Sarfraz, Marios Koulakis, Constantin Seibold, Rainer Stiefelhagen},
  booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2022}
}

If you make use of the clustering properties of the algorithm please also cite:

 @inproceedings{finch,
   author    = {M. Saquib Sarfraz and Vivek Sharma and Rainer Stiefelhagen},
   title     = {Efficient Parameter-free Clustering Using First Neighbor Relations},
   booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
   pages = {8934--8943},
   year  = {2019}
}
Owner
Marios Koulakis
My latest work is in deep learning, computer vision and mathematics.
Marios Koulakis
SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors [Paper] [Project Website] Pytorch implementation for SAVI2I. We

Qi Mao 44 Dec 30, 2022
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Hiroki Nakayama 1.5k Dec 05, 2022
FireFlyer Record file format, writer and reader for DL training samples.

FFRecord The FFRecord format is a simple format for storing a sequence of binary records developed by HFAiLab, which supports random access and Linux

77 Jan 04, 2023
Data and code to support "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley)

anlp21 Course materials for "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley) Syllabus: http://people.ischool.berkeley.edu/~dba

David Bamman 48 Dec 06, 2022
Différents programmes créant une interface graphique a l'aide de Tkinter pour simplifier la vie des étudiants.

GP211-Grand-Projet Ce repertoire contient tout les programmes nécessaires au bon fonctionnement de notre projet-logiciel. Cette interface graphique es

1 Dec 21, 2021
This repository contains (not all) code from my project on Named Entity Recognition in philosophical text

NERphilosophy 👋 Welcome to the github repository of my BsC thesis. This repository contains (not all) code from my project on Named Entity Recognitio

Ruben 1 Jan 27, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling This repository contains PyTorch evaluation code, training code and pretrain

Facebook Research 94 Oct 26, 2022
This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular intervals.It sends out the most recent news at random!

Nepali-news-notifier This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular in

Sachit Yadav 1 Feb 11, 2022
Framework for fine-tuning pretrained transformers for Named-Entity Recognition (NER) tasks

NERDA Not only is NERDA a mesmerizing muppet-like character. NERDA is also a python package, that offers a slick easy-to-use interface for fine-tuning

Ekstra Bladet 141 Dec 30, 2022
🚀 RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.

In recent years, the dense retrievers based on pre-trained language models have achieved remarkable progress. To facilitate more developers using cutt

475 Jan 04, 2023
VoiceFixer VoiceFixer is a framework for general speech restoration.

VoiceFixer VoiceFixer is a framework for general speech restoration. We aim at the restoration of severly degraded speech and historical speech. Paper

Leo 174 Jan 06, 2023
Generate text line images for training deep learning OCR model (e.g. CRNN)

Generate text line images for training deep learning OCR model (e.g. CRNN)

532 Jan 06, 2023
Official PyTorch implementation of SegFormer

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 29, 2022
Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

18 Nov 28, 2022
Code for the paper "Language Models are Unsupervised Multitask Learners"

Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner

OpenAI 16.1k Jan 08, 2023
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition

CRNN paper:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 1. create your ow

Tsukinousag1 3 Apr 02, 2022
本插件是pcrjjc插件的重置版,可以独立于后端api运行

pcrjjc2 本插件是pcrjjc重置版,不需要使用其他后端api,但是需要自行配置客户端 本项目基于AGPL v3协议开源,由于项目特殊性,禁止基于本项目的任何商业行为 配置方法 环境需求:.net framework 4.5及以上 jre8 别忘了装jre8 别忘了装jre8 别忘了装jre8

132 Dec 26, 2022
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
A Lightweight NLP Data Loader for All Deep Learning Frameworks in Python

LineFlow: Framework-Agnostic NLP Data Loader in Python LineFlow is a simple text dataset loader for NLP deep learning tasks. LineFlow was designed to

TofuNLP 177 Jan 04, 2023
spaCy plugin for Transformers , Udify, ELmo, etc.

Camphr - spaCy plugin for Transformers, Udify, Elmo, etc. Camphr is a Natural Language Processing library that helps in seamless integration for a wid

342 Nov 21, 2022