SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

Related tags

Text Data & NLPSAVI2I
Overview

License CC BY-NC-SA 4.0 Python 3.6

SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

[Paper] [Project Website]

Pytorch implementation for SAVI2I. We propose a simple yet effective signed attribute vector (SAV) that facilitates continuous translation on diverse mapping paths across multiple domains.
More video results please see Our Webpage
Contact: Qi Mao ([email protected])

Paper

Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors
Qi Mao, Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Siwei Ma, and Ming-Hsuan Yang
In arXiv 2020

Citation

If you find this work useful for your research, please cite our paper:

    @article{mao2020continuous,
      author       = "Mao, Qi and Lee, Hsin-Ying and Tseng, Hung-Yu and Huang, Jia-Bin and Ma, Siwei and Yang, Ming-Hsuan",
      title        = "Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors",
      journal    = "arXiv preprint 2011.01215",
      year         = "2020"
    }

Quick Start

Prerequisites

  • Linux or Windows
  • Python 3+
  • Suggest to use two P100 16GB GPUs or One V100 32GB GPU.

Install

  • Clone this repo:
git clone https://github.com/HelenMao/SAVI2I.git
cd SAVI2I
  • This code requires Pytorch 0.4.0+ and Python 3+. Please install dependencies by
conda create -n SAVI2I python=3.6
source activate SAVI2I
pip install -r requirements.txt 

Training Datasets

Download datasets for each task into the dataset folder

./datasets
  • Style translation: Yosemite (summer <-> winter) and Photo2Artwork (Photo, Monet, Van Gogh and Ukiyo-e)
  • You can follow the instructions of CycleGAN datasets to download Yosemite and Photo2artwork datasets.
  • Shape-variation translation: CelebA-HQ (Male <-> Female) and AFHQ (Cat, Dog and WildLife)
  • We split CelebA-HQ into male and female domains according to the annotated label and fine-tune the images manaully.
  • You can follow the instructions of StarGAN-v2 datasets to download CelebA-HQ and AFHQ datasets.

Training

Notes

For low-level style translation tasks, you suggest to set --type=1 to use corresponding network architectures.
For shape-variation translation tasks, you suggest to set --type=0 to use corresponding network architectures.

  • Yosemite
python train.py --dataroot ./datasets/Yosemite/ --phase train --type 1 --name Yosemite --n_ep 700 --n_ep_decay 500 --lambda_r1 10 --lambda_mmd 1 --num_domains 2
  • Photo2artwork
python train.py --dataroot ./datasets/Photo2artwork/ --phase train --type 1 --name Photo2artwork --n_ep 100 --n_ep_decay 0 --lambda_r1 10 --lambda_mmd 1 --num_domains 4
  • CelebAHQ
python train.py --dataroot ./datasets/CelebAHQ/ --phase train --type 0 --name CelebAHQ --n_ep 30 --n_ep_decay 0 --lambda_r1 1 --lambda_mmd 1 --num_domains 2
  • AFHQ
python train.py --dataroot ./datasets/AFHQ/ --phase train --type 0 --name AFHQ --n_ep 100 --n_ep_decay 0 --lambda_r1 1 --lambda_mmd 10 --num_domains 3

Pre-trained Models

Download and save them into

./models

or download the pre-trained models with the following script.

bash ./download_models.sh

Testing

Reference-guided

python test_reference_save.py --dataroot ./datasets/CelebAHQ --resume ./models/CelebAHQ/00029.pth --phase test --type 0 --num_domains 2 --index_s A --index_t B --num 5 --name CelebAHQ_ref  

Latent-guided

python test_latent_rdm_save.py --dataroot ./datasets/CelebAHQ --resume ./models/CelebAHQ/00029.pth --phase test --type 0 --num_domains 2 --index_s A --index_t B --num 5 --name CelebAHQ_rdm  

License

All rights reserved.
Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International).
The codes are only for academical research use. For commercial use, please contact [email protected].

Acknowledgements

Codes and network architectures inspired from:

Owner
Qi Mao
PhD student in Institute of Digital Media, Peking University.
Qi Mao
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
neural network based speaker embedder

Content What is deepaudio-speaker? Installation Get Started Model Architecture How to contribute to deepaudio-speaker? Acknowledge What is deepaudio-s

20 Dec 29, 2022
Fake news detector filters - Smart filter project allow to classify the quality of information and web pages

fake-news-detector-1.0 Lists, lists and more lists... Spam filter list, quality keyword list, stoplist list, top-domains urls list, news agencies webs

Memo Sim 1 Jan 04, 2022
基于“Seq2Seq+前缀树”的知识图谱问答

KgCLUE-bert4keras 基于“Seq2Seq+前缀树”的知识图谱问答 简介 博客:https://kexue.fm/archives/8802 环境 软件:bert4keras=0.10.8 硬件:目前的结果是用一张Titan RTX(24G)跑出来的。 运行 第一次运行的时候,会给知

苏剑林(Jianlin Su) 65 Dec 12, 2022
Sentiment-Analysis and EDA on the IMDB Movie Review Dataset

Sentiment-Analysis and EDA on the IMDB Movie Review Dataset The main part of the work focuses on the exploration and study of different approaches whi

Nikolas Petrou 1 Jan 12, 2022
STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch.

st3 STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch. Currently it supports converting pbmm models to pt scripts with integra

Vlad Ki 8 Oct 18, 2021
A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. X-Ray supports 18 languages.

WordDumb A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. Languages X-Ray supp

172 Dec 29, 2022
Natural Language Processing at EDHEC, 2022

Natural Language Processing Here you will find the teaching materials for the "Natural Language Processing" course at EDHEC Business School, 2022 What

1 Feb 04, 2022
The training code for the 4th place model at MDX 2021 leaderboard A.

The training code for the 4th place model at MDX 2021 leaderboard A.

Chin-Yun Yu 32 Dec 18, 2022
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Code of paper: A Recurrent Vision-and-Language BERT for Navigation

Recurrent VLN-BERT Code of the Recurrent-VLN-BERT paper: A Recurrent Vision-and-Language BERT for Navigation Yicong Hong, Qi Wu, Yuankai Qi, Cristian

YicongHong 109 Dec 21, 2022
Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis

MLP Singer Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis. Audio samples are available on our demo page.

Neosapience 103 Dec 23, 2022
KR-FinBert And KR-FinBert-SC

KR-FinBert & KR-FinBert-SC Much progress has been made in the NLP (Natural Language Processing) field, with numerous studies showing that domain adapt

5 Jul 29, 2022
Chinese version of GPT2 training code, using BERT tokenizer.

GPT2-Chinese Description Chinese version of GPT2 training code, using BERT tokenizer or BPE tokenizer. It is based on the extremely awesome repository

Zeyao Du 5.6k Jan 04, 2023
Python implementation of TextRank for phrase extraction and summarization of text documents

PyTextRank PyTextRank is a Python implementation of TextRank as a spaCy pipeline extension, used to: extract the top-ranked phrases from text document

derwen.ai 1.9k Jan 06, 2023
New Modeling The Background CodeBase

Modeling the Background for Incremental Learning in Semantic Segmentation This is the updated official PyTorch implementation of our work: "Modeling t

Fabio Cermelli 9 Dec 28, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling This repository contains PyTorch evaluation code, training code and pretrain

Facebook Research 94 Oct 26, 2022
TFIDF-based QA system for AIO2 competition

AIO2 TF-IDF Baseline This is a very simple question answering system, which is developed as a lightweight baseline for AIO2 competition. In the traini

Masatoshi Suzuki 4 Feb 19, 2022
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022