Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

Related tags

Text Data & NLPsew
Overview

SEW (Squeezed and Efficient Wav2vec)

made-with-python License: MIT

The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition" by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q Weinberger, and Yoav Artzi.

Model Checkpoints

Unsupervisedly Pre-trained on LibriSpeech 960h

Model Pre-training updates Dataset Model
W2V2-tiny 100K Librispeech 960h download
W2V2-small 100K Librispeech 960h download
W2V2-mid 100K Librispeech 960h download
W2V2-base 100K Librispeech 960h download
SEW-tiny 100K Librispeech 960h download
SEW-small 100K Librispeech 960h download
SEW-mid 100K Librispeech 960h download
SEW-D-tiny 100K Librispeech 960h download
SEW-D-small 100K Librispeech 960h download
SEW-D-mid 100K Librispeech 960h download
SEW-D-mid (k127) 100K Librispeech 960h download
SEW-D-base 100K Librispeech 960h download
SEW-D-base+ 100K Librispeech 960h download
SEW-D-mid 400K Librispeech 960h download
SEW-D-mid (k127) 400K Librispeech 960h download
SEW-D-base+ 400K Librispeech 960h download

ASR model fine-tuned on LibriSpeech train-clean 100h

Model Pre-training updates Finetuning split Model
SEW-tiny 100K 100h download
SEW-D-tiny 100K 100h download
SEW-D-mid 400K 100h download
SEW-D-mid (k127) 400K 100h download
SEW-D-base+ 400K 100h download

Usage

Dependencies

The code is tested with fairseq commit 05255f9, deberta commit bf17ca4 and the following packages.

torch==1.8.0
torchaudio==0.8.0
tqdm==4.49.0
Hydra==2.5
hydra-core==1.0.4
fvcore==0.1.5.post20210330
omegaconf==2.0.5
einops==0.3.0
fire==0.2.1

Apex

Please install NVIDIA's apex with

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
  --global-option="--deprecated_fused_adam" --global-option="--xentropy" \
  --global-option="--fast_multihead_attn" ./

wav2letter decoder

Currently, we are decoding with wav2letter v0.2 python binding at commit 96f5f9d Please install the python binding here https://github.com/flashlight/wav2letter/tree/96f5f9d3b41e01af0a031ee0d2604acd9ef3b1b0/bindings/python The newest commit d5a93f0 in v0.2 branch leads to worse WER for wav2vec 2.0 baselines.

Installation

git clone https://github.com/asappresearch/sew.git
cd sew 
pip install -e .

Pre-training

Pre-training SEW models

Run the following command where $model_size can be tiny, small, or mid, and $ngpu is tne number of GPUs you want to use.

bash scripts/pt-sew.sh $model_size $ngpu

Pre-training SEW-D models

bash scripts/pt-sew-d.sh $model_size $ngpu

where $model_size can be tiny, small, mid, mid-k127, base, or base+.

Fine-tuning

Run the following script to fine-tune a model with the hyperparameters from wav2vec 2.0.

bash scripts/ft-model.sh $pre_trained_model $split $ngpu

where $pre_trained_model can be either a W2V2, SEW, or a SEW-D model checkpoint and $split can be 10m, 1h, 10h, or 100h.

Here we also provide a set of hyperparameters which sets all dropouts the same as the pre-training stage, and we found it to be more stable.

bash scripts/ft-model-stable.sh $pre_trained_model $split $ngpu

If you see out of GPU memory error, please scale down the dataset.max_tokens and scale up the optimization.update_freq in scripts/ft-model.sh. For example modifying these lines

  dataset.max_tokens=3200000 \
  optimization.update_freq="[$((8 / $ngpu))]" \

to

  dataset.max_tokens=1600000 \
  optimization.update_freq="[$((16 / $ngpu))]" \

which reduces the batch size and increases the gradient accumulation steps in order to use less GPU memory.

Evaluation

  1. Please run this script to prepare the official LibriSpeech 4-gram language model.
bash scripts/prepare_librispeech_lm.sh $kenlm_build_bin

where $kenlm_build_bin is the folder that contains the KenLM build_binary executable file (e.g. /home/user/kenlm/build/bin).

  1. Then run this script to evaluate a pre-trained ASR model
python tools/eval_w2v.py tunelm --subsets '["dev-clean", "dev-other", "test-clean", "test-other"]' --model $asr_checkpoint
You might also like...
Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding
Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding

⚠️ Checkout develop branch to see what is coming in pyannote.audio 2.0: a much smaller and cleaner codebase Python-first API (the good old pyannote-au

PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

Unsupervised intent recognition

INTENT author: steeve LAQUITAINE description: deployment pattern: currently batch only Setup & run git clone https://github.com/slq0/intent.git bash

Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the

PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing
PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing

PhoNLP is a multi-task learning model for joint part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP produces state-of-the-art results, outperforming a single-task learning approach that fine-tunes the pre-trained Vietnamese language model PhoBERT for each task independently.

Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Comments
  • 8000 sample rate audio

    8000 sample rate audio

    Hello there,

    I'm trying to train on 8000 Hz sample rate audio dataset. Is it enough to simply add task.sample_rate=8000 to the fairseq command or there are additional config changes that I should make?

    I would much appreciate any advice

    Thank you

    opened by Mega4alik 0
  • How to train using not English Languages

    How to train using not English Languages

    Hi! Thank you for the awesome model!

    We are very interested in your project and we try to use the sew for Japanese Language. When we train the model, should we use these scripts? Thanks! https://github.com/asappresearch/sew/tree/master/scripts

    opened by jigenji 1
  • :bug: Fix padding mask calculation

    :bug: Fix padding mask calculation

    This PR updates the padding mask calculation to be the same as the one in the reference Wav2Vec2 implementation (same commit as listed in SEW's README): https://github.com/pytorch/fairseq/blob/05255f96410e5b1eaf3bf59b767d5b4b7e2c3a35/fairseq/models/wav2vec/wav2vec2.py#L477

    For more details on how and why it was fixed in fairseq, check out this PR by @patrickvonplaten https://github.com/pytorch/fairseq/pull/3228

    opened by anton-l 0
Releases(v0.0.1)
Owner
ASAPP Research
AI for Enterprise
ASAPP Research
Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module.

Import Subtitles for Blender VSE Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module. Supported formats by py

4 Feb 27, 2022
Japanese NLP Library

Japanese NLP Library Back to Home Contents 1 Requirements 1.1 Links 1.2 Install 1.3 History 2 Libraries and Modules 2.1 Tokenize jTokenize.py 2.2 Cabo

Pulkit Kathuria 144 Dec 27, 2022
🐍💯pySBD (Python Sentence Boundary Disambiguation) is a rule-based sentence boundary detection that works out-of-the-box.

pySBD: Python Sentence Boundary Disambiguation (SBD) pySBD - python Sentence Boundary Disambiguation (SBD) - is a rule-based sentence boundary detecti

Nipun Sadvilkar 549 Jan 06, 2023
Bnagla hand written document digiiztion

Bnagla hand written document digiiztion This repo addresses the problem of digiizing hand written documents in Bangla. Documents have definite fields

Mushfiqur Rahman 1 Dec 10, 2021
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 Corpora 📃 Corpora Number of documents Size (GB) BNE 201,080,084 570GB Models 🤖 RoBERTa-base BNE: https://huggingface.co

PlanTL-SANIDAD 203 Dec 20, 2022
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset.

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset. Through its Python API, the pretrained model can be fine-tuned on any protein-related task in

241 Jan 04, 2023
A Python script that compares files in directories

compare-files A Python script that compares files in different directories, this is similar to the command filecmp.cmp(f1, f2). I made this script in

Colvin 1 Oct 15, 2021
中文空间语义理解评测

中文空间语义理解评测 最新消息 2021-04-10 🚩 排行榜发布: Leaderboard 2021-04-05 基线系统发布: SpaCE2021-Baseline 2021-04-05 开放数据提交: 提交结果 2021-04-01 开放报名: 我要报名 2021-04-01 数据集 pa

40 Jan 04, 2023
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Dec 30, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

Nathan Cooper 2.3k Jan 01, 2023
PORORO: Platform Of neuRal mOdels for natuRal language prOcessing

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing pororo performs Natural Language Processing and Speech-related tasks. It is easy to

Kakao Brain 1.2k Dec 21, 2022
Klexikon: A German Dataset for Joint Summarization and Simplification

Klexikon: A German Dataset for Joint Summarization and Simplification Dennis Aumiller and Michael Gertz Heidelberg University Under submission at LREC

Dennis Aumiller 8 Jan 03, 2023
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
GNES enables large-scale index and semantic search for text-to-text, image-to-image, video-to-video and any-to-any content form

GNES is Generic Neural Elastic Search, a cloud-native semantic search system based on deep neural network.

GNES.ai 1.2k Jan 06, 2023
Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation (SIGGRAPH Asia 2021)

Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation This repository contains the implementation of the following paper: Live Speech

OldSix 575 Dec 31, 2022
List of GSoC organisations with number of times they have been selected.

Welcome to GSoC Organisation Frequency And Details 👋 List of GSoC organisations with number of times they have been selected, techonologies, topics,

Shivam Kumar Jha 41 Oct 01, 2022
Just Another Telegram Ai Chat Bot Written In Python With Pyrogram.

OkaeriChatBot Just another Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher.

Wahyusaputra 2 Dec 23, 2021
ChatBotProyect - This is an unfinished project about a simple chatbot.

chatBotProyect This is an unfinished project about a simple chatbot. (union_todo.ipynb) Reminders for the project: Find why one of the vectorizers fai

Tomás 0 Jul 24, 2022