Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

Related tags

Text Data & NLPSTEMM
Overview

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation

This is a PyTorch implementation for the ACL 2022 main conference paper STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation.

Training a Model on MuST-C

Let's first take a look at training an En-De model as an example.

Enviroment Configuration

  1. Clone this repository:
git clone [email protected]:ictnlp/STEMM.git
cd STEMM/
  1. Install Montreal Forced Aligner following the official guidance. Please also download the pertained models and dictionary for MFA.

  2. Please make sure you have installed PyTorch, and then install fairseq and other packages as follows:

pip install --editable ./
python3 setup.py install --user
python3 setup.py build_ext --inplace
pip install inflect sentencepiece soundfile textgrid pandas

Data Preparation

  1. First make a directory to store the dataset:
TGT_LANG=de
MUSTC_ROOT=data/mustc/
mkdir -p $MUSTC_ROOT
  1. Download the MuST-C v1.0 archive MUSTC_v1.0_en-de.tar.gz to the $MUSTC_ROOT path, and uncompress it:
cd $MUSTC_ROOT
tar -xzvf MUSTC_v1.0_en-de.tar.gz
  1. Return to the root directory, run the preprocess script preprocess.sh, which will perform forced alignment and organize the raw data and alignment information into .tsv format for using:
sh preprocess.sh $TGT_LANG
  1. Finally, the directory $MUSTC_ROOT should look like this:
.
├── en-de
│   ├── config_raw.yaml
│   ├── data
│   ├── dev_raw_seg_plus.tsv
│   ├── docs
│   ├── segment
│   ├── spm_unigram10000_raw.model
│   ├── spm_unigram10000_raw.txt
│   ├── spm_unigram10000_raw.vocab
│   ├── train_raw_seg_plus.tsv
│   ├── tst-COMMON_raw_seg_plus.tsv
│   ├── tst-HE_raw_seg_plus.tsv
└── MUSTC_v1.0_en-de.tar.gz

Pretrain the MT Module

[OPTIONAL] Use External MT Corpus

If you want to use external MT corpus, please first pretrain a MT model on this corpus following these steps:

  1. Perform BPE on external corpus with the sentencepiece model learned on MuST-C. As we mentioned in our paper, we use WMT for En-De, En-Fr, En-Ru, En-Es, En-Ro, and OPUS100 for En-Pt, En-It, En-Nl as external corpus. You can download them from the internet and put them in the data/ext_en${TGT_LANG}/ directory. Run the following command and replace $input_file with the path of raw text to perform BPE. You should apply BPE to texts in both source and target language of all subset (train/valid/test).
python3 data/scripts/apply_spm.py --input-file $input_file --output-file $output_file --model data/mustc/en-${TGT_LANG}/spm_unigram10000_raw.model
  1. Use fairseq-preprocess command to convert the BPE texts into fairseq formats. Make sure to use the sentencepiece dictionary learned on MuST-C.
$spm_dict=data/mustc/en-${TGT_LANG}/spm_unigram10000_raw.txt
fairseq-preprocess --source-lang en --target-lang $TGT_LANG --trainpref data/ext_en${TGT_LANG}/train --validpref data/ext_en${TGT_LANG}/valid --testpref data/ext_en${TGT_LANG}/test --destdir data/ext_en${TGT_LANG}/binary --joined-dictionary --srcdict $spm_dict --tgtdict $spm_dict --workers=20 --nwordssrc 10000 --nwordstgt 10000
  1. Train the model using the following command:
sh pretrain_mt_ext.sh $TGT_LANG

Pretrain the MT module on MuST-C

  1. Run the following script to pretrain the MT module. The argument --load-pretrained-mt-encoder-decoder-from indicates the path of MT model pretrained on external corpus obtained in the last step.
sh pretrain_mt.sh $TGT_LANG
  1. To ensure consistent performance, we have released our checkpoints of pretrained MT modules. You can download them and directly use them do initialize the MT module in our model for the following experiments.
Direction Link
En-De https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_ende_mt.pt
En-Fr https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enfr_mt.pt
En-Es https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enes_mt.pt
En-Ro https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enro_mt.pt
En-Ru https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enru_mt.pt
En-Nl https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_ennl_mt.pt
En-It https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enit_mt.pt
En-Pt https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enpt_mt.pt

Training

  1. Download the pretrained wav2vec2.0 model from the official link, and put it in the checkpoints/ directory.
  2. Just run the training scripts:
sh train.sh $TGT_LANG

Evaluate

  1. Run the following script to average the last 10 checkpoints and evaluate on the tst-COMMON set:
sh test.sh mustc_en${TGT_LANG}_stmm_self_learning $TGT_LANG
  1. We also released our checkpoints as follows. You can download and evaluate them directly.
Direction Link
En-De https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_ende_stmm_self_learning.pt
En-Fr https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enfr_stmm_self_learning.pt
En-Es https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enes_stmm_self_learning.pt
En-Ro https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enro_stmm_self_learning.pt
En-Ru https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enru_stmm_self_learning.pt
En-Nl https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_ennl_stmm_self_learning.pt
En-It https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enit_stmm_self_learning.pt
En-Pt https://lf3-nlp-opensource.bytetos.com/obj/nlp-opensource/acl2022/stmm/mustc_enpt_stmm_self_learning.pt

Citation

In this repository is useful for you, please cite as:

@inproceedings{fang-etal-2022-STEMM,
	title = {STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation},
	author = {Fang, Qingkai and Ye, Rong and Li, Lei and Feng, Yang and Wang, Mingxuan},
	booktitle = {Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics},
	year = {2022},
}

Contact

If you have any questions, feel free to contact me at [email protected].

Owner
ICTNLP
Natural Language Processing Group, Institute of Computing Technology, Chinese Academy of Sciences
ICTNLP
SentAugment is a data augmentation technique for semi-supervised learning in NLP.

SentAugment SentAugment is a data augmentation technique for semi-supervised learning in NLP. It uses state-of-the-art sentence embeddings to structur

Meta Research 363 Dec 30, 2022
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools

HuggingSound HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools. I have no intention of building a very complex tool here.

Jonatas Grosman 247 Dec 26, 2022
LeBenchmark: a reproducible framework for assessing SSL from speech

LeBenchmark: a reproducible framework for assessing SSL from speech

11 Nov 30, 2022
Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch

Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch. Topics: Face detection with Detectron 2, Time Series anomaly detection with LSTM Autoenc

Venelin Valkov 1.8k Dec 31, 2022
Finding Label and Model Errors in Perception Data With Learned Observation Assertions

Finding Label and Model Errors in Perception Data With Learned Observation Assertions This is the project page for Finding Label and Model Errors in P

Stanford Future Data Systems 17 Oct 14, 2022
MPNet: Masked and Permuted Pre-training for Language Understanding

MPNet MPNet: Masked and Permuted Pre-training for Language Understanding, by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu, is a novel pre-tr

Microsoft 228 Nov 21, 2022
Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

AI-BOT Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

Thempra 2 Dec 21, 2022
TruthfulQA: Measuring How Models Imitate Human Falsehoods

TruthfulQA: Measuring How Models Imitate Human Falsehoods

69 Dec 25, 2022
An end to end ASR Transformer model training repo

END TO END ASR TRANSFORMER 本项目基于transformer 6*encoder+6*decoder的基本结构构造的端到端的语音识别系统 Model Instructions 1.数据准备: 自行下载数据,遵循文件结构如下: ├── data │ ├── train │

旷视天元 MegEngine 10 Jul 19, 2022
The simple project to separate mixed voice (2 clean voices) to 2 separate voices.

Speech Separation The simple project to separate mixed voice (2 clean voices) to 2 separate voices. Result Example (Clisk to hear the voices): mix ||

vuthede 31 Oct 30, 2022
Estimation of the CEFR complexity score of a given word, sentence or text.

NLP-Swedish … allows to estimate CEFR (Common European Framework of References) complexity score of a given word, sentence or text. CEFR scores come f

3 Apr 30, 2022
Spam filtering made easy for you

spammy Author: Tasdik Rahman Latest version: 1.0.3 Contents 1 Overview 2 Features 3 Example 3.1 Accuracy of the classifier 4 Installation 4.1 Upgradin

Tasdik Rahman 137 Dec 18, 2022
A Chinese to English Neural Model Translation Project

ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C

Zhenbang Feng 29 Nov 26, 2022
An open-source NLP library: fast text cleaning and preprocessing.

An open-source NLP library: fast text cleaning and preprocessing

Iaroslav 21 Mar 18, 2022
A deep learning-based translation library built on Huggingface transformers

DL Translate A deep learning-based translation library built on Huggingface transformers and Facebook's mBART-Large 💻 GitHub Repository 📚 Documentat

Xing Han Lu 244 Dec 30, 2022
Problem: Given a nepali news find the category of the news

Classification of category of nepali news catorgory using different algorithms Problem: Multiclass Classification Approaches: TFIDF for vectorization

pudasainishushant 2 Jan 09, 2022
Neural-Machine-Translation - Implementation of revolutionary machine translation models

Neural Machine Translation Framework: PyTorch Repository contaning my implementa

Utkarsh Jain 1 Feb 17, 2022
:mag: Transformers at scale for question answering & neural search. Using NLP via a modular Retriever-Reader-Pipeline. Supporting DPR, Elasticsearch, HuggingFace's Modelhub...

Haystack is an end-to-end framework that enables you to build powerful and production-ready pipelines for different search use cases. Whether you want

deepset 6.4k Jan 09, 2023