Klexikon: A German Dataset for Joint Summarization and Simplification

Overview

Klexikon: A German Dataset for Joint Summarization and Simplification

Dennis Aumiller and Michael Gertz
Heidelberg University

Under submission at LREC 2022
A preprint version of the paper can be found on arXiv!
For easy access, we have also made the dataset available on Huggingface Datasets!


Data Availability

To use data in your experiments, we suggest the existing training/validation/test split, available in ./data/splits/. This split has been generated with a stratified sampling strategy (based on document lengths) and a 80/10/10 split, which ensure that the samples are somewhat evenly distributed.

Alternatively, please refer to our Huggingface Datasets version for easy access of the preprocessed data.

Installation

This repository contains the code to crawl the Klexikon data set presented in our paper, as well as all associated baselines and splits. You can work on the existing code base by simply cloning this repository.

Install all required dependencies with the following command:

python3 -m pip install -r requirements.txt

The experiments were run on Python 3.8.4, but should run fine with any version >3.7. To run files, relative imports are required, which forces you to run them as modules, e.g.,

python3 -m klexikon.analysis.compare_offline_stats

instead of

python3 klexikon/analysis/compare_offline_stats.py

Furthermore, this requires the working directory to be the root folder as well, to ensure correct referencing of relative data paths. I.e., if you cloned this repository into /home/dennis/projects/klexikon, make sure to run scripts directly from this path.

Extended Explanation

Manually Replaced Articles in articles.json

Aside from all the manual matches, which can be produced by create_matching_url_list.py, there are some articles which simply link to an incorrect article in Wikipedia.
We approximate this by the number of paragraphs in the Wikipedia article, which is generally much longer than the Klexikon article, and therefore should have at least 15 paragraphs. Note that most of the pages are disambiguations, which unfortunately don't necessarily correspond neatly to a singular Wikipedia page. We remove the article if it is not possible to find a singular Wikipedia article that covers more than 66% of the paragraphs in the Klexikon article. Some examples for manual changes were:

  • "Aal" to "Aale"
  • "Abendmahl" to "Abendmahl Jesu"
  • "Achse" to "Längsachse"
  • "Ader" to "Blutgefäß"
  • "Albino" to "Albinismus"
  • "Alkohol" to "Ethanol"
  • "Android" to "Android (Betriebssystem)"
  • "Anschrift" to "Postanschrift"
  • "Apfel" to "Kulturapfel"
  • "App" to "Mobile App"
  • "Appenzell" to "Appenzellerland"
  • "Arabien" to "Arabische Halbinsel"
  • "Atlas" to "Atlas (Kartografie)"
  • "Atmosphäre" to "Erdatmospähre"

Merging sentences that end in a semicolon (;)

This applies to any position in the document. The reason is rectifying some unwanted splits by spaCy.

Merge of short lines in lead 3 baseline

Also checking for lines that have less than 10 characters in the first three sentences. This helps with fixing the lead-3 baseline, and most issues arise from some incorrect splits to begin with.

Removal of coordinates

Sometimes, coordinate information is leading in the data, which seems to be embedded in some Wikipedia articles. We remove any coordinate with a simple regex.

Sentences that do not end in a period

Manual correction of sentences (in the lead 3) that do not end in periods. This has been automatically fixed by merging content similarly to the semicolon case. Specifically, we only merge if the subsequent line is not just an empty line.

Using your own data

Currently, the systems expect input data to be processed in a line-by-line fashion, where every line represents a sentence, and each file represents an input document. Note that we currently do not support multi-document summarization.

Criteria for discarding articles

Articles where Wikipedia has less than 15 paragraphs. Otherwise, manually discarding when there are no matching articles in Wikipedia (see above). Examples of the latter case are for example "Kiwi" or "Washington"

Reasons for not using lists

As described in the paper, we discard any element that is not a

tag in the HTLM code. This helps getting rid of actual unwanted information (images, image captions, meta-descriptors, etc.), but also removes list items. After reviewing some examples, we have decided to discard list elements altogether. This means that some articles (especially disambiguation pages) are also easier to detect.

Final number of valid article pairs: 2898

This means we had to discard around 250 articles from the original list at the time of crawling (April 2021). In the meantime, there have been new articles added to Klexikon, which leaves room for future improvements.

Execution Order of Scripts

TK: I'll include a better reference to the particular scripts in the near future, as well as a script that actually executes everything relevant in order.

  • Generate JSON file with article URLs
  • Crawl texts
  • Fix lead sentences
  • Remove unused articles (optional)
  • Generate stratified split

License Information

Both Wikipedia and Klexikon make their textual contents available under the CC BY-SA license. Per recommendation of the Creative Commons, we apply a separate license to the software component of this repository. Data will be re-distributed under the CC BY-SA license.

Contributions

Contributions are very welcome. Please either open an issue or pull request if you have any suggestion on how this data can be improved. Open TODOs:

  • So far, the data does not have more than a few simplistic baselines, and lacks an actually trained system on top of the data.
  • The dataset is "out-of-date", since it does not include any of the more recently articles (~100 since the inception of my version). Potentially, we can increase the availability to almost 3000 articles.
  • Adding a top-level script that adds correct execution order of different scripts to generate baselines/results/etc.
  • Adding a proper data managing script for the Huggingface Datasets version of this dataset.

How to Cite?

If you use our dataset, or code from this repository, please cite

@article{aumiller-gertz-2022-klexikon,  
  title   = {{Klexikon: A German Dataset for Joint Summarization and Simplification}},  
  author  = {Aumiller, Dennis and Gertz, Michael},  
  year    = {2022},  
  journal = {arXiv preprint arXiv:2201.07198},  
  url     = {https://arxiv.org/abs/2201.07198},  
}
Owner
Dennis Aumiller
PhD student in Information Retrieval & NLP at Heidelberg University. Python is awesome, and so is Huggingface
Dennis Aumiller
Automated question generation and question answering from Turkish texts using text-to-text transformers

Turkish Question Generation Offical source code for "Automated question generation & question answering from Turkish texts using text-to-text transfor

Open Business Software Solutions 29 Dec 14, 2022
A library for end-to-end learning of embedding index and retrieval model

Poeem Poeem is a library for efficient approximate nearest neighbor (ANN) search, which has been widely adopted in industrial recommendation, advertis

54 Dec 21, 2022
Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer

MT5_paddle Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer English | 简体中文 mT5: A Massively

2 Oct 17, 2021
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

13.2k Jul 07, 2021
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

OpenBMB 377 Jan 02, 2023
Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together

SpeechMix Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together. Introduction For the same input: from datas

Eric Lam 31 Nov 07, 2022
texlive expressions for documents

tex2nix Generate Texlive environment containing all dependencies for your document rather than downloading gigabytes of texlive packages. Installation

Jörg Thalheim 70 Dec 26, 2022
This code is the implementation of Text Emotion Recognition (TER) with linguistic features

APSIPA-TER This code is the implementation of Text Emotion Recognition (TER) with linguistic features. The network model is BERT with a pretrained mod

kenro515 1 Feb 08, 2022
SHAS: Approaching optimal Segmentation for End-to-End Speech Translation

SHAS: Approaching optimal Segmentation for End-to-End Speech Translation In this repo you can find the code of the Supervised Hybrid Audio Segmentatio

Machine Translation @ UPC 21 Dec 20, 2022
Subtitle Workshop (subshop): tools to download and synchronize subtitles

SUBSHOP Tools to download, remove ads, and synchronize subtitles. SUBSHOP Purpose Limitations Required Web Credentials Installation, Configuration, an

Joe D 4 Feb 13, 2022
Fixes mojibake and other glitches in Unicode text, after the fact.

ftfy: fixes text for you print(fix_encoding("(ง'⌣')ง")) (ง'⌣')ง Full documentation: https://ftfy.readthedocs.org Testimonials “My life is li

Luminoso Technologies, Inc. 3.4k Dec 29, 2022
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

Chung-Ming Chien 1k Dec 30, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

HNLP 1.1k Dec 16, 2022
Pretrain CPM - 大规模预训练语言模型的预训练代码

CPM-Pretrain 版本更新记录 为了促进中文自然语言处理研究的发展,本项目提供了大规模预训练语言模型的预训练代码。项目主要基于DeepSpeed、Megatron实现,可以支持数据并行、模型加速、流水并行的代码。 安装 1、首先安装pytorch等基础依赖,再安装APEX以支持fp16。 p

Tsinghua AI 37 Dec 06, 2022
Azure Text-to-speech service for Home Assistant

Azure Text-to-speech service for Home Assistant The Azure text-to-speech platform uses online Azure Text-to-Speech cognitive service to read a text wi

Yassine Selmi 2 Aug 06, 2022
Toy example of an applied ML pipeline for me to experiment with MLOps tools.

Toy Machine Learning Pipeline Table of Contents About Getting Started ML task description and evaluation procedure Dataset description Repository stru

Shreya Shankar 190 Dec 21, 2022
A raytrace framework using taichi language

ti-raytrace The code use Taichi programming language Current implement acceleration lvbh disney brdf How to run First config your anaconda workspace,

蕉太狼 73 Dec 11, 2022
PORORO: Platform Of neuRal mOdels for natuRal language prOcessing

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing pororo performs Natural Language Processing and Speech-related tasks. It is easy to

Kakao Brain 1.2k Dec 21, 2022
Host your own GPT-3 Discord bot

GPT3 Discord Bot Host your own GPT-3 Discord bot i'd host and make the bot invitable myself, however GPT3 terms of service prohibit public use of GPT3

[something hillarious here] 8 Jan 07, 2023
Guide to using pre-trained large language models of source code

Large Models of Source Code I occasionally train and publicly release large neural language models on programs, including PolyCoder. Here, I describe

Vincent Hellendoorn 947 Dec 28, 2022