Klexikon: A German Dataset for Joint Summarization and Simplification

Overview

Klexikon: A German Dataset for Joint Summarization and Simplification

Dennis Aumiller and Michael Gertz
Heidelberg University

Under submission at LREC 2022
A preprint version of the paper can be found on arXiv!
For easy access, we have also made the dataset available on Huggingface Datasets!


Data Availability

To use data in your experiments, we suggest the existing training/validation/test split, available in ./data/splits/. This split has been generated with a stratified sampling strategy (based on document lengths) and a 80/10/10 split, which ensure that the samples are somewhat evenly distributed.

Alternatively, please refer to our Huggingface Datasets version for easy access of the preprocessed data.

Installation

This repository contains the code to crawl the Klexikon data set presented in our paper, as well as all associated baselines and splits. You can work on the existing code base by simply cloning this repository.

Install all required dependencies with the following command:

python3 -m pip install -r requirements.txt

The experiments were run on Python 3.8.4, but should run fine with any version >3.7. To run files, relative imports are required, which forces you to run them as modules, e.g.,

python3 -m klexikon.analysis.compare_offline_stats

instead of

python3 klexikon/analysis/compare_offline_stats.py

Furthermore, this requires the working directory to be the root folder as well, to ensure correct referencing of relative data paths. I.e., if you cloned this repository into /home/dennis/projects/klexikon, make sure to run scripts directly from this path.

Extended Explanation

Manually Replaced Articles in articles.json

Aside from all the manual matches, which can be produced by create_matching_url_list.py, there are some articles which simply link to an incorrect article in Wikipedia.
We approximate this by the number of paragraphs in the Wikipedia article, which is generally much longer than the Klexikon article, and therefore should have at least 15 paragraphs. Note that most of the pages are disambiguations, which unfortunately don't necessarily correspond neatly to a singular Wikipedia page. We remove the article if it is not possible to find a singular Wikipedia article that covers more than 66% of the paragraphs in the Klexikon article. Some examples for manual changes were:

  • "Aal" to "Aale"
  • "Abendmahl" to "Abendmahl Jesu"
  • "Achse" to "Längsachse"
  • "Ader" to "Blutgefäß"
  • "Albino" to "Albinismus"
  • "Alkohol" to "Ethanol"
  • "Android" to "Android (Betriebssystem)"
  • "Anschrift" to "Postanschrift"
  • "Apfel" to "Kulturapfel"
  • "App" to "Mobile App"
  • "Appenzell" to "Appenzellerland"
  • "Arabien" to "Arabische Halbinsel"
  • "Atlas" to "Atlas (Kartografie)"
  • "Atmosphäre" to "Erdatmospähre"

Merging sentences that end in a semicolon (;)

This applies to any position in the document. The reason is rectifying some unwanted splits by spaCy.

Merge of short lines in lead 3 baseline

Also checking for lines that have less than 10 characters in the first three sentences. This helps with fixing the lead-3 baseline, and most issues arise from some incorrect splits to begin with.

Removal of coordinates

Sometimes, coordinate information is leading in the data, which seems to be embedded in some Wikipedia articles. We remove any coordinate with a simple regex.

Sentences that do not end in a period

Manual correction of sentences (in the lead 3) that do not end in periods. This has been automatically fixed by merging content similarly to the semicolon case. Specifically, we only merge if the subsequent line is not just an empty line.

Using your own data

Currently, the systems expect input data to be processed in a line-by-line fashion, where every line represents a sentence, and each file represents an input document. Note that we currently do not support multi-document summarization.

Criteria for discarding articles

Articles where Wikipedia has less than 15 paragraphs. Otherwise, manually discarding when there are no matching articles in Wikipedia (see above). Examples of the latter case are for example "Kiwi" or "Washington"

Reasons for not using lists

As described in the paper, we discard any element that is not a

tag in the HTLM code. This helps getting rid of actual unwanted information (images, image captions, meta-descriptors, etc.), but also removes list items. After reviewing some examples, we have decided to discard list elements altogether. This means that some articles (especially disambiguation pages) are also easier to detect.

Final number of valid article pairs: 2898

This means we had to discard around 250 articles from the original list at the time of crawling (April 2021). In the meantime, there have been new articles added to Klexikon, which leaves room for future improvements.

Execution Order of Scripts

TK: I'll include a better reference to the particular scripts in the near future, as well as a script that actually executes everything relevant in order.

  • Generate JSON file with article URLs
  • Crawl texts
  • Fix lead sentences
  • Remove unused articles (optional)
  • Generate stratified split

License Information

Both Wikipedia and Klexikon make their textual contents available under the CC BY-SA license. Per recommendation of the Creative Commons, we apply a separate license to the software component of this repository. Data will be re-distributed under the CC BY-SA license.

Contributions

Contributions are very welcome. Please either open an issue or pull request if you have any suggestion on how this data can be improved. Open TODOs:

  • So far, the data does not have more than a few simplistic baselines, and lacks an actually trained system on top of the data.
  • The dataset is "out-of-date", since it does not include any of the more recently articles (~100 since the inception of my version). Potentially, we can increase the availability to almost 3000 articles.
  • Adding a top-level script that adds correct execution order of different scripts to generate baselines/results/etc.
  • Adding a proper data managing script for the Huggingface Datasets version of this dataset.

How to Cite?

If you use our dataset, or code from this repository, please cite

@article{aumiller-gertz-2022-klexikon,  
  title   = {{Klexikon: A German Dataset for Joint Summarization and Simplification}},  
  author  = {Aumiller, Dennis and Gertz, Michael},  
  year    = {2022},  
  journal = {arXiv preprint arXiv:2201.07198},  
  url     = {https://arxiv.org/abs/2201.07198},  
}
Owner
Dennis Aumiller
PhD student in Information Retrieval & NLP at Heidelberg University. Python is awesome, and so is Huggingface
Dennis Aumiller
Snips Python library to extract meaning from text

Snips NLU Snips NLU (Natural Language Understanding) is a Python library that allows to extract structured information from sentences written in natur

Snips 3.7k Dec 30, 2022
AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

Microsoft 37 Nov 29, 2022
2021语言与智能技术竞赛:机器阅读理解任务

LICS2021 MRC 1. 项目&任务介绍 本项目基于官方给定的baseline(DuReader-Checklist-BASELINE)进行二次改造,对整个代码框架做了简单的重构,对核心网络结构添加了注释,解耦了数据读取的模块,并添加了阈值确认的功能,一些小的细节也做了改进。 本次任务为202

roar 29 Dec 05, 2022
Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization 📥 Download Datasets 📥 Download Trained Models INTRODUCTION TH2ZH (

Nakhun Chumpolsathien 5 Jan 03, 2022
Korean Sentence Embedding Repository

Korean-Sentence-Embedding 🍭 Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides

80 Jan 02, 2023
EasyTransfer is designed to make the development of transfer learning in NLP applications easier.

EasyTransfer is designed to make the development of transfer learning in NLP applications easier. The literature has witnessed the success of applying

Alibaba 819 Jan 03, 2023
Simple, hackable offline speech to text - using the VOSK-API.

Simple, hackable offline speech to text - using the VOSK-API.

Campbell Barton 844 Jan 07, 2023
Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

Graph4AI 230 Nov 22, 2022
ACL22 paper: Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost

Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost LOVE is accpeted by ACL22 main conference as a long pape

Lihu Chen 32 Jan 03, 2023
Random Directed Acyclic Graph Generator

DAG_Generator Random Directed Acyclic Graph Generator verison1.0 简介 工作流通常由DAG(有向无环图)来定义,其中每个计算任务$T_i$由一个顶点(node,task,vertex)表示。同时,任务之间的每个数据或控制依赖性由一条加权

Livion 17 Dec 27, 2022
A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode

Bloxflip Smart Bet A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode. https://bloxflip.com/crash. THIS

43 Jan 05, 2023
Milaan Parmar / Милан пармар / _米兰 帕尔马 170 Dec 13, 2022
IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models

IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models. Everything is pure Python and PyTorch based to keep it as simple and beginner-friendly, yet powerful as possible.

Digital Phonetics at the University of Stuttgart 247 Jan 05, 2023
Auto-researching tool generating word documents.

About ResearchTE automates researching by generating document with answers to given questions. Supports getting results from: Google DuckDuckGo (with

1 Feb 14, 2022
Blazing fast language detection using fastText model

Luga A blazing fast language detection using fastText's language models Luga is a Swahili word for language. fastText provides a blazing fast language

Prayson Wilfred Daniel 18 Dec 20, 2022
A linter to manage all your python exceptions and try/except blocks (limited only for those who like dinosaurs).

Manage your exceptions in Python like a PRO Currently in BETA. Inspired by this blog post. I shared the building process of this tool here. “For those

Guilherme Latrova 353 Dec 31, 2022
Grading tools for Advanced NLP (11-711)Grading tools for Advanced NLP (11-711)

Grading tools for Advanced NLP (11-711) Installation You'll need docker and unzip to use this repo. For docker, visit the official guide to get starte

Hao Zhu 2 Sep 27, 2022
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
The source code of "Language Models are Few-shot Multilingual Learners" (MRL @ EMNLP 2021)

Language Models are Few-shot Multilingual Learners Paper This is the source code of the paper [Arxiv] [ACL Anthology]: This code has been written usin

Genta Indra Winata 45 Nov 21, 2022