Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Overview



MIT License Latest Release Build Status Documentation Status


Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks.

We provide reference implementations of various sequence modeling papers:

List of implemented papers

What's New:

Previous updates

Features:

We also provide pre-trained models for translation and language modeling with a convenient torch.hub interface:

en2de = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-de.single_model')
en2de.translate('Hello world', beam=5)
# 'Hallo Welt'

See the PyTorch Hub tutorials for translation and RoBERTa for more examples.

Requirements and Installation

  • PyTorch version >= 1.5.0
  • Python version >= 3.6
  • For training new models, you'll also need an NVIDIA GPU and NCCL
  • To install fairseq and develop locally:
git clone https://github.com/pytorch/fairseq
cd fairseq
pip install --editable ./

# on MacOS:
# CFLAGS="-stdlib=libc++" pip install --editable ./

# to install the latest stable release (0.10.x)
# pip install fairseq
  • For faster training install NVIDIA's apex library:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
  --global-option="--deprecated_fused_adam" --global-option="--xentropy" \
  --global-option="--fast_multihead_attn" ./
  • For large datasets install PyArrow: pip install pyarrow
  • If you use Docker make sure to increase the shared memory size either with --ipc=host or --shm-size as command line options to nvidia-docker run .

Getting Started

The full documentation contains instructions for getting started, training new models and extending fairseq with new model types and tasks.

Pre-trained models and examples

We provide pre-trained models and pre-processed, binarized test sets for several tasks listed below, as well as example training and evaluation commands.

We also have more detailed READMEs to reproduce results from specific papers:

Join the fairseq community

License

fairseq(-py) is MIT-licensed. The license applies to the pre-trained models as well.

Citation

Please cite as:

@inproceedings{ott2019fairseq,
  title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
  author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli},
  booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations},
  year = {2019},
}
You might also like...
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

💬   Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

💬   Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

💬   Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

FB ID CLONER WUTHOT CHECKPOINT, FACEBOOK ID CLONE FROM FILE
FB ID CLONER WUTHOT CHECKPOINT, FACEBOOK ID CLONE FROM FILE

* MY SOCIAL MEDIA : Programming And Memes Want to contact Mr. Error ? CONTACT : errora[email protected] Install script on Termux $ apt update && apt upgra

 A Facebook Messenger Chatbot using NLP
A Facebook Messenger Chatbot using NLP

A Facebook Messenger Chatbot using NLP This project is about creating a messenger chatbot using basic NLP techniques and models like Logistic Regressi

An open-source NLP research library, built on PyTorch.
An open-source NLP research library, built on PyTorch.

An Apache 2.0 NLP research library, built on PyTorch, for developing state-of-the-art deep learning models on a wide variety of linguistic tasks. Quic

💥 Fast State-of-the-Art Tokenizers optimized for Research and Production
💥 Fast State-of-the-Art Tokenizers optimized for Research and Production

Provides an implementation of today's most used tokenizers, with a focus on performance and versatility. Main features: Train new vocabularies and tok

Releases(v0.10.2)
  • v0.10.2(Jan 5, 2021)

  • v0.10.0(Nov 12, 2020)

    It's been a long time since our last release (0.9.0) nearly a year ago! There have been numerous changes and new features added since then, which we've tried to summarize below. While this release carries the same major version as our previous release (0.x.x), if you have code that relies on 0.9.0, it is likely you'll need to adapt it before updating to 0.10.0.

    Looking forward, this will also be the last significant release with the 0.x.x numbering. The next release will be 1.0.0 and will include a major migration to the Hydra configuration system, with an eye towards modularizing fairseq to be more usable as a library.

    Changelog:

    New papers:

    Major new features:

    • TorchScript support for Transformer and SequenceGenerator (PyTorch 1.6+ only)
    • Model parallel training support (see Megatron-11b)
    • TPU support via --tpu and --bf16 options (775122950d145382146e9120308432a9faf9a9b8)
    • Added VizSeq (a visual analysis toolkit for evaluating fairseq models)
    • Migrated to Python logging (fb76dac1c4e314db75f9d7a03cb4871c532000cb)
    • Added “SlowMo” distributed training backend (0dac0ff3b1d18db4b6bb01eb0ea2822118c9dd13)
    • Added Optimizer State Sharding (ZeRO) (5d7ed6ab4f92d20ad10f8f792b8703e260a938ac)
    • Added several features to improve speech recognition support in fairseq: CTC criterion, external ASR decoder support (currently only wav2letter decoder) with KenLM and fairseq language model fusion

    Minor features:

    • Added --patience for early stopping
    • Added --shorten-method=[none|truncate|random_crop] to language modeling (and other) tasks
    • Added --eval-bleu for computing BLEU scores during training (60fbf64f302a825eee77637a0b7de54fde38fb2c)
    • Added support for training huggingface models (e.g. hf_gpt2) (2728f9b06d9a3808cc7ebc2afa1401eddef35e35)
    • Added FusedLAMB optimizer (--optimizer=lamb) (f75411af2690a54a5155871f3cf7ca1f6fa15391)
    • Added LSTM-based language model (lstm_lm) (9f4256edf60554afbcaadfa114525978c141f2bd)
    • Added dummy tasks and models for benchmarking (91f05347906e80e6705c141d4c9eb7398969a709; a541b19d853cf4a5209d3b8f77d5d1261554a1d9)
    • Added tutorial and pretrained models for paraphrasing (630701eaa750efda4f7aeb1a6d693eb5e690cab1)
    • Support quantization for Transformer (6379573c9e56620b6b4ddeb114b030a0568ce7fe)
    • Support multi-GPU validation in fairseq-validate (2f7e3f33235b787de2e34123d25f659e34a21558)
    • Support batched inference in hub interface (3b53962cd7a42d08bcc7c07f4f858b55bf9bbdad)
    • Support for language model fusion in standard beam search (5379461e613263911050a860b79accdf4d75fd37)

    Breaking changes:

    • Updated requirements to Python 3.6+ and PyTorch 1.5+
    • --max-sentences renamed to --batch-size
    • Main entry point scripts (eval_lm.py, generate.py, etc.) removed from root directory into fairseq_cli
    • Changed format for generation output; H- now corresponds to tokenized system outputs and newly added D- lines correspond to detokenized outputs (f353913420b6ef8a31ecc55d2ec0c988178698e0)
    • We now log the stats from the log-interval (displayed as train_inner) instead of a rolling average over each epoch.
    • SequenceGenerator/Scorer does not print alignment by default, re-enable with --print-alignment
    • Print base 2 scores in generation scripts (660d69fd2bdc4c3468df7eb26b3bbd293c793f94)
    • Incremental decoding interface changed to use FairseqIncrementalState (4e48c4ae5da48a5f70c969c16793e55e12db3c81; 88185fcc3f32bd24f65875bd841166daa66ed301)
    • Refactor namespaces in Criterions to support library usage (introduce LegacyFairseqCriterion for BC) (46b773a393c423f653887c382e4d55e69627454d)
    • Deprecate FairseqCriterion::aggregate_logging_outputs interface, use FairseqCriterion::reduce_metrics instead (86793391e38bf88c119699bfb1993cb0a7a33968)
    • Moved fairseq.meters to fairseq.logging.meters and added new metrics aggregation module (fairseq.logging.metrics) (1e324a5bbe4b1f68f9dadf3592dab58a54a800a8; f8b795f427a39c19a6b7245be240680617156948)
    • Reset mid-epoch stats every log-interval steps (244835d811c2c66b1de2c5e86532bac41b154c1a)
    • Ignore duplicate entries in dictionary files (dict.txt) and support manual overwrite with #fairseq:overwrite option (dd1298e15fdbfc0c3639906eee9934968d63fc29; 937535dba036dc3759a5334ab5b8110febbe8e6e)
    • Use 1-based indexing for epochs everywhere (aa79bb9c37b27e3f84e7a4e182175d3b50a79041)

    Minor interface changes:

    • Added FairseqTask::begin_epoch hook (122fc1db49534a5ca295fcae1b362bbd6308c32f)
    • FairseqTask::build_generator interface changed (cd2555a429b5f17bc47260ac1aa61068d9a43db8)
    • Change RobertaModel base class to FairseqEncoder (307df5604131dc2b93cc0a08f7c98adbfae9d268)
    • Expose FairseqOptimizer.param_groups property (8340b2d78f2b40bc365862b24477a0190ad2e2c2)
    • Deprecate --fast-stat-sync and replace with FairseqCriterion::logging_outputs_can_be_summed interface (fe6c2edad0c1f9130847b9a19fbbef169529b500)
    • --raw-text and --lazy-load are fully deprecated; use --dataset-impl instead
    • Mixture of expert tasks moved to examples/ (8845dcf5ff43ca4d3e733ade62ceca52f1f1d634)

    Performance improvements:

    • Use cross entropy from apex for improved memory efficiency (5065077dfc1ec4da5246a6103858641bfe3c39eb)
    • Added buffered dataloading (--data-buffer-size) (411531734df8c7294e82c68e9d42177382f362ef)
    Source code(tar.gz)
    Source code(zip)
  • v0.9.0(Dec 4, 2019)

    Possibly breaking changes:

    • Set global numpy seed (4a7cd58)
    • Split in_proj_weight into separate k, v, q projections in MultiheadAttention (fdf4c3e)
    • TransformerEncoder returns namedtuples instead of dict (27568a7)

    New features:

    • Add --fast-stat-sync option (e1ba32a)
    • Add --empty-cache-freq option (315c463)
    • Support criterions with parameters (ba5f829)

    New papers:

    • Simple and Effective Noisy Channel Modeling for Neural Machine Translation (49177c9)
    • Levenshtein Transformer (86857a5, ...)
    • Cross+Self-Attention for Transformer Models (4ac2c5f)
    • Jointly Learning to Align and Translate with Transformer Models (1c66792)
    • Reducing Transformer Depth on Demand with Structured Dropout (dabbef4)
    • Unsupervised Cross-lingual Representation Learning at Scale (XLM-RoBERTa) (e23e5ea)
    • BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension (a92bcda)
    • CamemBERT: a French BERT (b31849a)

    Speed improvements:

    • Add CUDA kernels for LightConv and DynamicConv (f840564)
    • Cythonization of various dataloading components (4fc3953, ...)
    • Don't project mask tokens for MLM training (718677e)
    Source code(tar.gz)
    Source code(zip)
  • v0.8.0(Aug 14, 2019)

    Changelog:

    • Relicensed under MIT license
    • Add RoBERTa
    • Add wav2vec
    • Add WMT'19 models
    • Add initial ASR code
    • Changed torch.hub interface (generate renamed to translate)
    • Add --tokenizer and --bpe
    • f812e52: Renamed data.transforms -> data.encoders
    • 654affc: New Dataset API (optional)
    • 47fd985: Deprecate old Masked LM components
    • 5f78106: Set mmap as default dataset format and infer format automatically
    • Misc fixes for sampling
    • Misc fixes to support PyTorch 1.2
    Source code(tar.gz)
    Source code(zip)
  • v0.7.2(Jul 19, 2019)

    No major API changes since the last release. Cutting a new release since we'll be merging significant (possibly breaking) changes to logging, data loading and the masked LM implementation soon.

    Source code(tar.gz)
    Source code(zip)
  • v0.7.1(Jun 20, 2019)

  • v0.7.0(Jun 19, 2019)

    Notable (possibly breaking) changes:

    • d45db80: Remove checkpoint utility functions from utils.py into checkpoint_utils.py
    • f2563c2: Move LM definitions into separate files
    • dffb167: Updates to model API:
      • FairseqModel -> FairseqEncoderDecoderModel
      • add FairseqDecoder.extract_features and FairseqDecoder.output_layer
      • encoder_out_dict -> encoder_out
      • rm unused remove_head functions
    • 34726d5: Move distributed_init into DistributedFairseqModel
    • cf17068: Simplify distributed launch by automatically launching multiprocessing on each node for all visible GPUs (allows launching just one job per node instead of one per GPU)
    • d45db80: Change default LR scheduler from reduce_lr_on_plateau to fixed
    • 96ac28d: Rename --sampling-temperature -> --temperature
    • fc1a19a: Deprecate dummy batches
    • a1c997b: Add memory mapped datasets
    • 0add50c: Allow cycling over multiple datasets, where each one becomes an "epoch"

    Plus many additional features and bugfixes

    Source code(tar.gz)
    Source code(zip)
  • v0.6.2(Mar 15, 2019)

    Changelog:

    • 998ba4f: Add language models from Baevski & Auli (2018)
    • 4294c4f: Add mixture of experts code from Shen et al. (2019)
    • 0049349: Add example for multilingual training
    • 48d9afb: Speed improvements, including fused operators from apex
    • 44d27e6: Add Tensorboard support
    • d17fa85: Add Adadelta optimizer
    • 9e1c880: Add FairseqEncoderModel
    • b65c579: Add FairseqTask.inference_step to modularize generate.py
    • 2ad1178: Add back --curriculum
    • Misc bug fixes and other features
    Source code(tar.gz)
    Source code(zip)
  • v0.6.1(Feb 9, 2019)

  • v0.6.0(Sep 26, 2018)

    Changelog:

    • 4908863: Switch to DistributedDataParallelC10d and bump version 0.5.0 -> 0.6.0
      • no more FP16Trainer, we just have an FP16Optimizer wrapper
      • most of the distributed code is moved to a new wrapper class called DistributedFairseqModel, which behaves like DistributedDataParallel and a FairseqModel at the same time
      • Trainer now requires an extra dummy_batch argument at initialization, which we do fwd/bwd on when there's an uneven number of batches per worker. We hide the gradients from these dummy batches by multiplying the loss by 0
      • Trainer.train_step now takes a list of samples, which will allow cleaner --update-freq
    • 1c56b58: parallelize preprocessing
    • Misc bug fixes and features
    Source code(tar.gz)
    Source code(zip)
Binary LSTM model for text classification

Text Classification The purpose of this repository is to create a neural network model of NLP with deep learning for binary classification of texts re

Nikita Elenberger 1 Mar 11, 2022
Shared, streaming Python dict

UltraDict Sychronized, streaming Python dictionary that uses shared memory as a backend Warning: This is an early hack. There are only few unit tests

Ronny Rentner 192 Dec 23, 2022
A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models

wav2vec-toolkit A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models This repository accompanies the

Anton Lozhkov 29 Oct 23, 2022
Deep Learning Topics with Computer Vision & NLP

Deep learning Udacity Course Deep Learning Topics with Computer Vision & NLP for the AWS Machine Learning Engineer Nanodegree Program Tasks are mostly

Simona Mircheva 1 Jan 20, 2022
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets

Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets What is LASSL • How to Use What is LASSL LASSL은 LAnguage Semi-Super

LASSL: LAnguage Self-Supervised Learning 116 Dec 27, 2022
p-tuning for few-shot NLU task

p-tuning_NLU Overview 这个小项目是受乐于分享的苏剑林大佬这篇p-tuning 文章启发,也实现了个使用P-tuning进行NLU分类的任务, 思路是一样的,prompt实现方式有不同,这里是将[unused*]的embeddings参数抽取出用于初始化prompt_embed后

3 Dec 29, 2022
Lingtrain Aligner — ML powered library for the accurate texts alignment.

Lingtrain Aligner ML powered library for the accurate texts alignment in different languages. Purpose Main purpose of this alignment tool is to build

Sergei Averkiev 76 Dec 14, 2022
Code for EMNLP20 paper: "ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training"

ProphetNet-X This repo provides the code for reproducing the experiments in ProphetNet. In the paper, we propose a new pre-trained language model call

Microsoft 394 Dec 17, 2022
A paper list of pre-trained language models (PLMs).

Large-scale pre-trained language models (PLMs) such as BERT and GPT have achieved great success and become a milestone in NLP.

RUCAIBox 124 Jan 02, 2023
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT This repo provides the code for reproducing the experiments in CodeBERT: A Pre-Trained Model for Programming and Natural Languages. CodeBERT

Microsoft 1k Jan 03, 2023
Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022)

SyntaxGen Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022) In this repo, we upload all the scripts for this work. Due to siz

Zhuosheng Zhang 3 Jun 13, 2022
Fully featured implementation of Routing Transformer

Routing Transformer A fully featured implementation of Routing Transformer. The paper proposes using k-means to route similar queries / keys into the

Phil Wang 246 Jan 02, 2023
An Explainable Leaderboard for NLP

ExplainaBoard: An Explainable Leaderboard for NLP Introduction | Website | Download | Backend | Paper | Video | Bib Introduction ExplainaBoard is an i

NeuLab 319 Dec 20, 2022
Exploring dimension-reduced embeddings

sleepwalk Exploring dimension-reduced embeddings This is the code repository. See here for the Sleepwalk web page. License and disclaimer This program

S. Anders's research group at ZMBH 91 Nov 29, 2022
A cross platform OCR Library based on PaddleOCR & OnnxRuntime

A cross platform OCR Library based on PaddleOCR & OnnxRuntime

RapidOCR Team 767 Jan 09, 2023
Revisiting Pre-trained Models for Chinese Natural Language Processing (Findings of EMNLP 2020)

This repository contains the resources in our paper "Revisiting Pre-trained Models for Chinese Natural Language Processing", which will be published i

Yiming Cui 463 Dec 30, 2022
Analyse japanese ebooks using MeCab to determine the difficulty level for japanese learners

japanese-ebook-analysis This aim of this project is to make analysing the contents of a japanese ebook easy and streamline the process for non-technic

Christoffer Aakre 14 Jul 23, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022