A2T: Towards Improving Adversarial Training of NLP Models (EMNLP 2021 Findings)

Overview

A2T: Towards Improving Adversarial Training of NLP Models

This is the source code for the EMNLP 2021 (Findings) paper "Towards Improving Adversarial Training of NLP Models".

If you use the code, please cite the paper:

@misc{yoo2021improving,
      title={Towards Improving Adversarial Training of NLP Models}, 
      author={Jin Yong Yoo and Yanjun Qi},
      year={2021},
      eprint={2109.00544},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Prerequisites

The work heavily relies on the TextAttack package. In fact, the main training code is implemented in the TextAttack package.

Required packages are listed in the requirements.txt file.

pip install -r requirements.txt

Data

All of the data used for the paper are available from HuggingFace's Datasets.

For IMDB and Yelp datasets, because there are no official validation splits, we randomly sampled 5k and 10k, respectively, from the training set and used them as valid splits. We provide the splits in this Google Drive folder. To use them with the provided code, place each folder (e.g. imdb, yelp, augmented_data) inside ./data (run mkdir data).

Also, augmented training data generated using SSMBA and back-translation are available in the same folder.

Training

To train BERT model on IMDB dataset with A2T attack for 4 epochs and 1 clean epoch with gamma of 0.2:

python train.py \
    --train imdb \
    --eval imdb \
    --model-type bert \
    --model-save-path ./example \
    --num-epochs 4 \
    --num-clean-epochs 1 \
    --num-adv-examples 0.2 \
    --attack-epoch-interval 1 \
    --attack a2t \
    --learning-rate 5e-5 \
    --num-warmup-steps 100 \
    --grad-accumu-steps 1 \
    --checkpoint-interval-epochs 1 \
    --seed 42

You can also pass roberta to train RoBERTa model instead of BERT model. To select other datasets from the paper, pass rt (MR), yelp, or snli for --train and --eval.

This script is actually just to run the Trainer class from the TextAttack package. To checkout how training is performed, please checkout the Trainer class.

Evaluation

To evalute the accuracy, robustness, and interpretability of our trained model from above, run

python evaluate.py \
    --dataset imdb \
    --model-type bert \
    --checkpoint-paths ./example_run \
    --epoch 4 \
    --save-log \
    --accuracy \
    --robustness \
    --attacks a2t a2t_mlm textfooler bae pwws pso \
    --interpretability 

This takes the last checkpoint model (--epoch 4) and evaluates its accuracy on both IMDB and Yelp dataset (for cross-domain accuracy). It also evalutes the model's robustness against A2T, A2T-MLM, TextFooler, BAE, PWWS, and PSO attacks. Lastly, with the --interpretability flag, AOPC scores are calculated.

Note that you will have to run --robustness and --interpretability with --accuracy (or after you separately evaluate accuracy) since both robustness and intepretability evaluations rely on the accuracy evaluation to know which samples the model was able to predict correctly. By default 1000 samples are attacked to evaluate robustness. Likewise, 1000 samples are used to calculate AOPC score for interpretability.

If you're evaluating multiple models for comparison, it's also advised that you provide all the checkpoint paths together to --checkpoint-paths. This is because the samples that are correctly by each model will be different, so we first need to identify the intersection of the all correct predictions before using them to evaluate robustness for all the models. This will allow fairer comparison of models' robustness rather than using attack different samples for each model.

Data Augmentation

Lastly, we also provide augment.py which we used to perform data augmentation methods such as SSMBA and back-translation.

Following is an example command for augmenting imdb dataset with SSMBA method.

python augment.py \
    --dataset imdb \
    --augmentation ssmba \
    --output-path ./augmented_data \
    --seed 42 

You can also pass backtranslation to --augmentation.

Owner
QData
http://www.cs.virginia.edu/yanjun/
QData
A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultimate TTS.

A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to ach

Keon Lee 237 Jan 02, 2023
A minimal code for fairseq vq-wav2vec model inference.

vq-wav2vec inference A minimal code for fairseq vq-wav2vec model inference. Runs without installing the fairseq toolkit and its dependencies. Usage ex

Vladimir Larin 7 Nov 15, 2022
Yet Another Compiler Visualizer

yacv: Yet Another Compiler Visualizer yacv is a tool for visualizing various aspects of typical LL(1) and LR parsers. Check out demo on YouTube to see

Ashutosh Sathe 129 Dec 17, 2022
EdiTTS: Score-based Editing for Controllable Text-to-Speech

Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

Neosapience 99 Jan 02, 2023
CDLA: A Chinese document layout analysis (CDLA) dataset

CDLA: A Chinese document layout analysis (CDLA) dataset 介绍 CDLA是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label: 正文 标题 图片 图片标题 表格 表格标题 页眉 页脚 注释 公式 Text Title

buptlihang 84 Dec 28, 2022
GPT-3 command line interaction

Writer_unblock Straight-forward command line interfacing with GPT-3. Finding yourself stuck at a conceptual stage? Spinning your wheels needlessly on

Seth Nuzum 6 Feb 10, 2022
NLP Text Classification

多标签文本分类任务 近年来随着深度学习的发展,模型参数的数量飞速增长。为了训练这些参数,需要更大的数据集来避免过拟合。然而,对于大部分NLP任务来说,构建大规模的标注数据集非常困难(成本过高),特别是对于句法和语义相关的任务。相比之下,大规模的未标注语料库的构建则相对容易。为了利用这些数据,我们可以

Jason 1 Nov 11, 2021
PocketSphinx is a lightweight speech recognition engine, specifically tuned for handheld and mobile devices, though it works equally well on the desktop

molten A minimal, extensible, fast and productive API framework for Python 3. Changelog: https://moltenframework.com/changelog.html Community: https:/

3.2k Dec 28, 2022
TruthfulQA: Measuring How Models Imitate Human Falsehoods

TruthfulQA: Measuring How Models Imitate Human Falsehoods

69 Dec 25, 2022
AllenNLP integration for Shiba: Japanese CANINE model

Allennlp Integration for Shiba allennlp-shiab-model is a Python library that provides AllenNLP integration for shiba-model. SHIBA is an approximate re

Shunsuke KITADA 12 Feb 16, 2022
Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Tokenizer Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code e

Manolo 1 Aug 15, 2022
AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

Microsoft 37 Nov 29, 2022
Autoregressive Entity Retrieval

The GENRE (Generative ENtity REtrieval) system as presented in Autoregressive Entity Retrieval implemented in pytorch. @inproceedings{decao2020autoreg

Meta Research 611 Dec 16, 2022
KR-FinBert And KR-FinBert-SC

KR-FinBert & KR-FinBert-SC Much progress has been made in the NLP (Natural Language Processing) field, with numerous studies showing that domain adapt

5 Jul 29, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Adversarial Purification with Score-based Generative Models by Jongmin Yoon, Sung Ju Hwang, Juho Lee This repository includes the official PyTorch imp

15 Dec 15, 2022
SHAS: Approaching optimal Segmentation for End-to-End Speech Translation

SHAS: Approaching optimal Segmentation for End-to-End Speech Translation In this repo you can find the code of the Supervised Hybrid Audio Segmentatio

Machine Translation @ UPC 21 Dec 20, 2022
Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU

GPU Docker NLP Application Deployment Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU, to setup the enviroment on

Ritesh Yadav 9 Oct 14, 2022
A multi-voice TTS system trained with an emphasis on quality

TorToiSe Tortoise is a text-to-speech program built with the following priorities: Strong multi-voice capabilities. Highly realistic prosody and inton

James Betker 2.1k Jan 01, 2023
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023