Cherche (search in French) allows you to create a neural search pipeline using retrievers and pre-trained language models as rankers.

Overview

Cherche

Neural search



Cherche (search in French) allows you to create a neural search pipeline using retrievers and pre-trained language models as rankers. Cherche is meant to be used with small to medium sized corpora. Cherche's main strength is its ability to build diverse and end-to-end pipelines.

Alt text

Installation 🤖

pip install cherche

To install the development version:

pip install git+https://github.com/raphaelsty/cherche

Documentation 📜

Documentation is available here. It provides details about retrievers, rankers, pipelines, question answering, summarization, and examples.

QuickStart 💨

Documents 📑

Cherche allows findings the right document within a list of objects. Here is an example of a corpus.

from cherche import data

documents = data.load_towns()

documents[:3]
[{'id': 0,
  'title': 'Paris',
  'url': 'https://en.wikipedia.org/wiki/Paris',
  'article': 'Paris is the capital and most populous city of France.'},
 {'id': 1,
  'title': 'Paris',
  'url': 'https://en.wikipedia.org/wiki/Paris',
  'article': "Since the 17th century, Paris has been one of Europe's major centres of science, and arts."},
 {'id': 2,
  'title': 'Paris',
  'url': 'https://en.wikipedia.org/wiki/Paris',
  'article': 'The City of Paris is the centre and seat of government of the region and province of Île-de-France.'
  }]

Retriever ranker 🔍

Here is an example of a neural search pipeline composed of a TfIdf that quickly retrieves documents, followed by a ranking model. The ranking model sorts the documents produced by the retriever based on the semantic similarity between the query and the documents.

from cherche import data, retrieve, rank
from sentence_transformers import SentenceTransformer

# List of dicts
documents = data.load_towns()

# Retrieve on fields title and article
retriever = retrieve.TfIdf(key="id", on=["title", "article"], documents=documents, k=30)

# Rank on fields title and article
ranker = rank.Encoder(
    key = "id",
    on = ["title", "article"],
    encoder = SentenceTransformer("sentence-transformers/all-mpnet-base-v2").encode,
    k = 3,
    path = "encoder.pkl"
)

# Pipeline creation
search = retriever + ranker

search.add(documents=documents)

search("Bordeaux")
[{'id': 57, 'similarity': 0.69513476},
 {'id': 63, 'similarity': 0.6214991},
 {'id': 65, 'similarity': 0.61809057}]

Map the index to the documents to access their contents.

search += documents
search("Bordeaux")
[{'id': 57,
  'title': 'Bordeaux',
  'url': 'https://en.wikipedia.org/wiki/Bordeaux',
  'article': 'Bordeaux ( bor-DOH, French: [bɔʁdo] (listen); Gascon Occitan: Bordèu [buɾˈðɛw]) is a port city on the river Garonne in the Gironde department, Southwestern France.',
  'similarity': 0.69513476},
 {'id': 63,
  'title': 'Bordeaux',
  'url': 'https://en.wikipedia.org/wiki/Bordeaux',
  'article': 'The term "Bordelais" may also refer to the city and its surrounding region.',
  'similarity': 0.6214991},
 {'id': 65,
  'title': 'Bordeaux',
  'url': 'https://en.wikipedia.org/wiki/Bordeaux',
  'article': "Bordeaux is a world capital of wine, with its castles and vineyards of the Bordeaux region that stand on the hillsides of the Gironde and is home to the world's main wine fair, Vinexpo.",
  'similarity': 0.61809057}]

Retrieve 👻

Cherche provides different retrievers that filter input documents based on a query.

  • retrieve.Elastic
  • retrieve.TfIdf
  • retrieve.Lunr
  • retrieve.BM25Okapi
  • retrieve.BM25L
  • retrieve.Flash
  • retrieve.Encoder

Rank 🤗

Cherche rankers are compatible with SentenceTransformers models, Hugging Face sentence similarity models, Hugging Face zero shot classification models, and of course with your own models.

Summarization and question answering

Cherche provides modules dedicated to summarization and question answering. These modules are compatible with Hugging Face's pre-trained models and can be fully integrated into neural search pipelines.

Acknowledgements 👏

The BM25 models available in Cherche are wrappers around rank_bm25. Elastic retriever is a wrapper around Python Elasticsearch Client. TfIdf retriever is a wrapper around scikit-learn's TfidfVectorizer. Lunr retriever is a wrapper around Lunr.py. Flash retriever is a wrapper around FlashText. DPR and Encode rankers are wrappers dedicated to the use of the pre-trained models of SentenceTransformers in a neural search pipeline. ZeroShot ranker is a wrapper dedicated to the use of the zero-shot sequence classifiers of Hugging Face in a neural search pipeline.

See also 👀

Cherche is a minimalist solution and meets a need for modularity. Cherche is the way to go if you start with a list of documents as JSON with multiple fields to search on and want to create pipelines. Also ,Cherche is well suited for middle sized corpora.

Do not hesitate to look at Haystack, Jina, or TxtAi which offer very advanced solutions for neural search and are great.

Dev Team 💾

The Cherche dev team is made up of Raphaël Sourty and François-Paul Servant 🥳

Comments
  • Added spelling corrector object

    Added spelling corrector object

    Hello ! I added a spelling corrector base class as well as the original implementation of the Norvig spelling corrector. The spelling corrector can be fitted directly on the pipeline's documents with the '.add(documents)' method. I also provided an optional (defaults to False) external dictionary, the one originally used by Norvig.

    I have no issue updating my code for improvements, so feel free to suggest any modification !

    opened by NicolasBizzozzero 4
  • 0.0.5

    0.0.5

    Pull request for Cherche version 0.0.5

    • RAG: add RAG generator for open domain question answering
    • RapidFuzzy: New blazzing fast retriever
    • Retrievers: Provide similarities for each retriever
    • Union & Intersection: Keep similarity scores
    opened by raphaelsty 1
  • Batch processing

    Batch processing

    Retrieving documents with batch of queries can significantly speed up things. It is now available for few models using the development version via the batch method.

    Models involved are:

    • TfIdf retriever
    • Encoder retriever (milvus + faiss)
    • Encoder ranker (milvus)
    • DPR retriever (milvus + faiss)
    • DPR ranker (milvus)
    • Recommend retriever

    Batch is not yet compatible with pipelines.

    enhancement 
    opened by raphaelsty 0
  • Cherche 1.0.0

    Cherche 1.0.0

    Here is an essential update for Cherche. The update retains the previous API and is compatible with previous versions. 🥳

    Main additions:

    • Added compatibility with two new open-source retrievers: Meilisearch and TypeSense.
    • Compatibility with the Milvus index to use the retriever.Encoder and retriever.DPR models on massive corpora.
    • Compatibility with the Milvus index to store ranker embeddings in a database rather than in memory.
    • Progress bar when pre-computing embeddings by Encoder, DPR retrievers and Encoder, DPR rankers.
    • All pipelines (voting, intersection, concatenation) produce a similarity score. To do so, the pipeline object applies a softmax to normalize the scores, thus allowing us to "compare" the scores of two distinct models.
    • Integration of collaborative filtering models via adding a Recommend retriever and a Recommend ranker (indexation via Faiss and compatible with Milvus) to consider users' preferences in the search.
    opened by raphaelsty 0
  • "IndexError: index out of range in self "While adding documents to cherche pipeline

    I'm using a cherche pipline built of a tfidf retriever with a sentencetransformer ranker as follows : search = (retriever + ranker) While trying to add documents to the pipeline (search.add(documents=documents), I got this error :

    """/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py in embedding(input, weight, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse) 2181 # remove once script supports set_grad_enabled 2182 no_grad_embedding_renorm(weight, input, max_norm, norm_type) -> 2183 return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse) 2184 2185

    IndexError: index out of range in self"""

    opened by delmetni 0
  • incomplete doc about metrics

    incomplete doc about metrics

    opened by fpservant 0
Releases(1.0.1)
  • 1.0.1(Oct 27, 2022)

  • 1.0.0(Oct 26, 2022)

    What's Changed

    Here is an essential update for Cherche! 🥳

    • Added compatibility with two new open-source retrievers: Meilisearch and TypeSense.
    • Compatibility with the Milvus index to use the retriever.Encoder and retriever.DPR models on massive corpora.
    • Compatibility with the Milvus index to store ranker embeddings in a database rather than in memory.
    • Progress bar when pre-computing embeddings by Encoder, DPR retrievers and Encoder, DPR rankers.
    • The path parameter is no longer used.
    • All pipelines (voting, intersection, concatenation) produce a similarity score. To do so, the pipeline object applies a softmax to normalize the scores, thus allowing us to "compare" the scores of two distinct models.
    • Integration of collaborative filtering models via adding a Recommend retriever and a Recommend ranker (indexation via Faiss and compatible with Milvus) to consider users' preferences in the search.

    Cherche is now fully compatible with large-scale corpora and deeply integrates collaborative filtering. Updates retains the previous API and is compatible with previous versions.

    Source code(tar.gz)
    Source code(zip)
  • 0.1.0(Jun 16, 2022)

    Added compatibility with the ONNX environment and quantization to significantly speed up sentence transformers and question answering models. 🏎

    It is now possible to choose the type of index for the Encoder and DPR retrievers in order to process the largest corpora while using the GPU.

    Source code(tar.gz)
    Source code(zip)
  • 0.0.9(Apr 13, 2022)

  • 0.0.8(Mar 7, 2022)

  • 0.0.7(Mar 7, 2022)

  • 0.0.6(Mar 3, 2022)

    • Update documentation
    • Update retriever Encoder and DPR, path is optionnal
    • Add deployment documentation
    • Update similarity type
    • Avoid round similarity
    Source code(tar.gz)
    Source code(zip)
  • 0.0.5(Feb 8, 2022)

    • Loading and Saving tutorial
    • Fuzzy retriever
    • Similarities everywhere (retrievers, union, intersection provide similarity scores)
    • RAG generation
    Source code(tar.gz)
    Source code(zip)
  • 0.0.4(Jan 20, 2022)

    Update of the encoder retriever and the DPR retriever. Documents in the Faiss index will not be duplicated. Query embeddings can now be pre-computed for ranker Encoder and ranker DPR to speed up evaluation without having to compute it again.

    Source code(tar.gz)
    Source code(zip)
  • 0.0.3(Jan 13, 2022)

  • 0.0.2(Jan 12, 2022)

    Update of the Cherche dependencies. The previous dependencies were too strict and restrictive as they were limited to a specific version for each package.

    Source code(tar.gz)
    Source code(zip)
Owner
Raphael Sourty
PhD Student @ IRIT and Renault
Raphael Sourty
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Meta Research 6.4k Jan 08, 2023
Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Jan 2 Apr 20, 2022
A Word Level Transformer layer based on PyTorch and 🤗 Transformers.

Transformer Embedder A Word Level Transformer layer based on PyTorch and 🤗 Transformers. How to use Install the library from PyPI: pip install transf

Riccardo Orlando 27 Nov 20, 2022
189 Jan 02, 2023
A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code or write code yourself

Scriptfab - What is it? A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code

DevNugget 3 Jul 28, 2021
FewCLUE: 为中文NLP定制的小样本学习测评基准

FewCLUE: 为中文NLP定制的小样本学习测评基准

CLUE benchmark 387 Jan 04, 2023
Plugin repository for Macast

Macast-plugins Plugin repository for Macast. How to use third-party player plugin Download Macast from GitHub Release. Download the plugin you want fr

109 Jan 04, 2023
Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization 📥 Download Datasets 📥 Download Trained Models INTRODUCTION TH2ZH (

Nakhun Chumpolsathien 5 Jan 03, 2022
Simple multilingual lemmatizer for Python, especially useful for speed and efficiency

Simplemma: a simple multilingual lemmatizer for Python Purpose Lemmatization is the process of grouping together the inflected forms of a word so they

Adrien Barbaresi 70 Dec 29, 2022
HF's ML for Audio study group

Hugging Face Machine Learning for Audio Study Group Welcome to the ML for Audio Study Group. Through a series of presentations, paper reading and disc

Vaibhav Srivastav 110 Jan 01, 2023
Pytorch version of BERT-whitening

BERT-whitening This is the Pytorch implementation of "Whitening Sentence Representations for Better Semantics and Faster Retrieval". BERT-whitening is

Weijie Liu 255 Dec 27, 2022
GVT is a generic translation tool for parts of text on the PC screen with Text to Speak functionality.

GVT is a generic translation tool for parts of text on the PC screen with Text to Speech functionality. I wanted to create it because the existing tools that I experimented with did not satisfy me in

Nuked 1 Aug 21, 2022
The following links explain a bit the idea of semantic search and how search mechanisms work by doing retrieve and rerank

Main Idea The following links explain a bit the idea of semantic search and how search mechanisms work by doing retrieve and rerank Semantic Search Re

Sergio Arnaud Gomez 2 Jan 28, 2022
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
nlpcommon is a python Open Source Toolkit for text classification.

nlpcommon nlpcommon, Python Text Tool. Guide Feature Install Usage Dataset Contact Cite Reference Feature nlpcommon is a python Open Source

xuming 3 May 29, 2022
NLP command-line assistant powered by OpenAI

NLP command-line assistant powered by OpenAI

Axel 16 Dec 09, 2022
GPT-2 Model for Leetcode Questions in python

Leetcode using AI 🤖 GPT-2 Model for Leetcode Questions in python New demo here: https://huggingface.co/spaces/gagan3012/project-code-py Note: the Ans

Gagan Bhatia 100 Dec 12, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
null

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022