BiNE: Bipartite Network Embedding

Related tags

Text Data & NLPBiNE
Overview

BiNE: Bipartite Network Embedding

This repository contains the demo code of the paper:

BiNE: Bipartite Network Embedding. Ming Gao, Leihui Chen, Xiangnan He & Aoying Zhou

which has been accepted by SIGIR2018.

Note: Any problems, you can contact me at [email protected]. Through email, you will get my rapid response.

Environment settings

  • python==2.7.11
  • numpy==1.13.3
  • sklearn==0.17.1
  • networkx==1.11
  • datasketch==1.2.5
  • scipy==0.17.0
  • six==1.10.0

Basic Usage

Main Parameters:

Input graph path. Defult is '../data/rating_train.dat' (--train-data)
Test dataset path. Default is '../data/rating_test.dat' (--test-data)
Name of model. Default is 'default' (--model-name)
Number of dimensions. Default is 128 (--d)
Number of negative samples. Default is 4 (--ns)
Size of window. Default is 5 (--ws)
Trade-off parameter $\alpha$. Default is 0.01 (--alpha)
Trade-off parameter $\beta$. Default is 0.01 (--beta)
Trade-off parameter $\gamma$. Default is 0.1 (--gamma)
Learning rate $\lambda$. Default is 0.01 (--lam)
Maximal iterations. Default is 50 (--max-iters)
Maximal walks per vertex. Default is 32 (--maxT)
Minimal walks per vertex. Default is 1 (--minT)
Walk stopping probability. Default is 0.15 (--p)
Calculate the recommendation metrics. Default is 0 (--rec)
Calculate the link prediction. Default is 0 (--lip)
File of training data for LR. Default is '../data/wiki/case_train.dat' (--case-train)
File of testing data for LR. Default is '../data/wiki/case_test.dat' (--case-test)
File of embedding vectors of U. Default is '../data/vectors_u.dat' (--vectors-u)
File of embedding vectors of V. Default is '../data/vectors_v.dat' (--vectors-v)
For large bipartite, 1 do not generate homogeneous graph file; 2 do not generate homogeneous graph. Default is 0 (--large)
Mertics of centrality. Default is 'hits', options: 'hits' and 'degree_centrality' (--mode)

Usage

We provide two processed dataset:

  • DBLP (for recommendation). It contains:

    • A training dataset ./data/dblp/rating_train.dat
    • A testing dataset ./data/dblp/rating_test.dat
  • Wikipedia (for link prediction). It contains:

    • A training dataset ./data/wiki/rating_train.dat
    • A testing dataset ./data/wiki/rating_test.dat
  • Each line is a instance: userID (begin with 'u')\titemID (begin with 'i') \t weight\n

    For example: u0\ti0\t1

Please run the './model/train.py'

cd model
python train.py --train-data ../data/dblp/rating_train.dat --test-data ../data/dblp/rating_test.dat --lam 0.025 --max-iter 100 --model-name dblp --rec 1 --large 2 --vectors-u ../data/dblp/vectors_u.dat --vectors-v ../data/dblp/vectors_v.dat

The embedding vectors of nodes are saved in file '/model-name/vectors_u.dat' and '/model-name/vectors_v.dat', respectively.

Example

Recommendation

Run

cd model
python train.py --train-data ../data/dblp/rating_train.dat --test-data ../data/dblp/rating_test.dat --lam 0.025 --max-iter 100 --model-name dblp --rec 1 --large 2 --vectors-u ../data/dblp/vectors_u.dat --vectors-v ../data/dblp/vectors_v.dat

Output (training process)

======== experiment settings =========
alpha : 0.0100, beta : 0.0100, gamma : 0.1000, lam : 0.0250, p : 0.1500, ws : 5, ns : 4, maxT :  32, minT : 1, max_iter : 100
========== processing data ===========
constructing graph....
number of nodes: 6001
walking...
walking...ok
number of nodes: 1177
walking...
walking...ok
getting context and negative samples....
negative samples is ok.....
context...
context...ok
context...
context...ok
============== training ==============
[*************************************************************************************************** ]100.00%

Output (testing process)

============== testing ===============
recommendation metrics: F1 : 0.1132, MAP : 0.2041, MRR : 0.3331, NDCG : 0.2609

Link Prediction

Run

cd model
python train.py --train-data ../data/wiki/rating_train.dat --test-data ../data/wiki/rating_test.dat --lam 0.01 --max-iter 100 --model-name wiki --lip 1 --large 2 --gamma 1 --vectors-u ../data/wiki/vectors_u.dat --vectors-v ../data/wiki/vectors_v.dat --case-train ../data/wiki/case_train.dat --case-test ../data/wiki/case_test.dat

Output (training process)

======== experiment settings =========
alpha : 0.0100, beta : 0.0100, gamma : 1.0000, lam : 0.0100, p : 0.1500, ws : 5, ns : 4, maxT :  32, minT : 1, max_iter : 100, d : 128
========== processing data ===========
constructing graph....
number of nodes: 15000
walking...
walking...ok
number of nodes: 2529
walking...
walking...ok
getting context and negative samples....
negative samples is ok.....
context...
context...ok
context...
context...ok
============== training ==============
[*************************************************************************************************** ]100.00%

Output (testing process)

============== testing ===============
link prediction metrics: AUC_ROC : 0.9468, AUC_PR : 0.9614
Owner
leihuichen
student
leihuichen
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 50 Dec 21, 2022
Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

Habib Abdurrasyid 5 Dec 28, 2021
A fast and easy implementation of Transformer with PyTorch.

FasySeq FasySeq is a shorthand as a Fast and easy sequential modeling toolkit. It aims to provide a seq2seq model to researchers and developers, which

宁羽 7 Jul 18, 2022
Japanese NLP Library

Japanese NLP Library Back to Home Contents 1 Requirements 1.1 Links 1.2 Install 1.3 History 2 Libraries and Modules 2.1 Tokenize jTokenize.py 2.2 Cabo

Pulkit Kathuria 144 Dec 27, 2022
Twitter Sentiment Analysis using #tag, words and username

Twitter Sentment Analysis Web App using #tag, words and username to fetch data finds Insides of data and Tells Sentiment of the perticular #tag, words or username.

Kumar Saksham 26 Dec 25, 2022
Quantifiers and Negations in RE Documents

Quantifiers-and-Negations-in-RE-Documents This project was part of my work for a

Nicolas Ruscher 1 Feb 01, 2022
InferSent sentence embeddings

InferSent InferSent is a sentence embeddings method that provides semantic representations for English sentences. It is trained on natural language in

Facebook Research 2.2k Dec 27, 2022
Application to help find best train itinerary, uses speech to text, has a spam filter to segregate invalid inputs, NLP and Pathfinding algos.

T-IAI-901-MSC2022 - GROUP 18 Gestion de projet Notre travail a été organisé et réparti dans un Trello. https://trello.com/b/X3s2fpPJ/ia-projet Install

1 Feb 05, 2022
Blender addon - Scrub timeline from viewport with a shortcut

Viewport scrub timeline Move in the timeline directly in viewport and snap to nearest keyframe Note : This standalone feature will be added in the nat

Samuel Bernou 40 Nov 07, 2022
A simple visual front end to the Maya UE4 RBF plugin delivered with MetaHumans

poseWrangler Overview PoseWrangler is a simple UI to create and edit pose-driven relationships in Maya using the MayaUE4RBF plugin. This plugin is dis

Christopher Evans 105 Dec 18, 2022
Ελληνικά νέα (Python script) / Greek News Feed (Python script)

Ελληνικά νέα (Python script) / Greek News Feed (Python script) Ελληνικά English Το 2017 είχα υλοποιήσει ένα Python script για να εμφανίζει τα τωρινά ν

Loren Kociko 1 Jun 14, 2022
A PyTorch Implementation of End-to-End Models for Speech-to-Text

speech Speech is an open-source package to build end-to-end models for automatic speech recognition. Sequence-to-sequence models with attention, Conne

Awni Hannun 647 Dec 25, 2022
Ray-based parallel data preprocessing for NLP and ML.

Wrangl Ray-based parallel data preprocessing for NLP and ML. pip install wrangl # for latest pip install git+https://github.com/vzhong/wrangl See exa

Victor Zhong 33 Dec 27, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
Conversational text Analysis using various NLP techniques

Conversational text Analysis using various NLP techniques

Rita Anjana 159 Jan 06, 2023
Convolutional Neural Networks for Sentence Classification

Convolutional Neural Networks for Sentence Classification Code for the paper Convolutional Neural Networks for Sentence Classification (EMNLP 2014). R

Yoon Kim 2k Jan 02, 2023
Machine Psychology: Python Generated Art

Machine Psychology: Python Generated Art A limited collection of 64 algorithmically generated artwork. Each unique piece is then given a title by the

Pixegami Team 67 Dec 13, 2022
Analyse japanese ebooks using MeCab to determine the difficulty level for japanese learners

japanese-ebook-analysis This aim of this project is to make analysing the contents of a japanese ebook easy and streamline the process for non-technic

Christoffer Aakre 14 Jul 23, 2022
Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables

Mortgage-Application-Analysis Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables: age, in

1 Jan 29, 2022