[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021

Overview

Compact Transformers

Preprint Link: Escaping the Big Data Paradigm with Compact Transformers

By Ali Hassani[1]*, Steven Walton[1]*, Nikhil Shah[1], Abulikemu Abuduweili[1], Jiachen Li[1,2], and Humphrey Shi[1,2,3]

*Ali Hassani and Steven Walton contributed equal work

In association with SHI Lab @ University of Oregon[1] and UIUC[2], and Picsart AI Research (PAIR)[3]

model-sym

Abstract

With the rise of Transformers as the standard for language processing, and their advancements in computer vi-sion, along with their unprecedented size and amounts of training data, many have come to believe that they are not suitable for small sets of data. This trend leads to great concerns, including but not limited to: limited availability of data in certain scientific domains and the exclusion ofthose with limited resource from research in the field. In this paper, we dispel the myth that transformers are “data-hungry” and therefore can only be applied to large sets of data. We show for the first time that with the right size and tokenization, transformers can perform head-to-head with state-of-the-art CNNs on small datasets. Our model eliminates the requirement for class token and positional embed-dings through a novel sequence pooling strategy and the use of convolutions. We show that compared to CNNs, our compact transformers have fewer parameters and MACs,while obtaining similar accuracies. Our method is flexible in terms of model size, and can have as little as 0.28M parameters and achieve reasonable results. It can reach an ac-curacy of 94.72% when training from scratch on CIFAR-10,which is comparable with modern CNN based approaches,and a significant improvement over previous Transformer based models. Our simple and compact design democratizes transformers by making them accessible to those equipped with basic computing resources and/or dealing with important small datasets.

ViT-Lite: Lightweight ViT

Different from ViT we show that an image is not always worth 16x16 words and the image patch size matters. Transformers are not in fact ''data-hungry,'' as the authors proposed, and smaller patching can be used to train efficiently on smaller datasets.

CVT: Compact Vision Transformers

Compact Vision Transformers better utilize information with Sequence Pooling post encoder, eliminating the need for the class token while achieving better accuracy.

CCT: Compact Convolutional Transformers

Compact Convolutional Transformers not only use the sequence pooling but also replace the patch embedding with a convolutional embedding, allowing for better inductive bias and making positional embeddings optional. CCT achieves better accuracy than ViT-Lite and CVT and increases the flexibility of the input parameters.

Comparison

How to run

Please make sure you're using the latest stable PyTorch version:

torch==1.8.1
torchvision==0.8.1

Refer to PyTorch's Getting Started page for detailed instructions.

We recommend starting with our faster version (CCT-2/3x2) which can be run with the following command. If you are running on a CPU we recommend this model.

python main.py \
       --model cct_2 \
       --conv-size 3 \
       --conv-layers 2 \
       path/to/cifar10

If you would like to run our best running model (CCT-7/3x1) with CIFAR-10 on your machine, please use the following command.

python main.py \
       --model cct_7 \
       --conv-size 3 \
       --conv-layers 1 \
       path/to/cifar10

Results

Type can be read in the format L/PxC where L is the number of transformer layers, P is the patch/convolution size, and C (CCT only) is the number of convolutional layers.

Model Type CIFAR-10 CIFAR-100 # Params MACs
ViT-Lite 7/4 91.38% 69.75% 3.717M 0.239G
6/4 90.94% 69.20% 3.191M 0.205G
CVT 7/4 92.43% 73.01% 3.717M 0.236G
6/4 92.58% 72.25% 3.190M 0.202G
CCT 2/3x2 89.17% 66.90% 0.284M 0.033G
4/3x2 91.45% 70.46% 0.482M 0.046G
6/3x2 93.56% 74.47% 3.327M 0.241G
7/3x2 93.65% 74.77% 3.853M 0.275G
7/3x1 94.72% 76.67% 3.760M 0.947G

Model zoo will be available soon.

Citation

@article{hassani2021escaping,
	title        = {Escaping the Big Data Paradigm with Compact Transformers},
	author       = {Ali Hassani and Steven Walton and Nikhil Shah and Abulikemu Abuduweili and Jiachen Li and Humphrey Shi},
	year         = 2021,
	url          = {https://arxiv.org/abs/2104.05704},
	eprint       = {2104.05704},
	archiveprefix = {arXiv},
	primaryclass = {cs.CV}
}
Owner
SHI Lab
Research in Synergetic & Holistic Intelligence, with current focus on Computer Vision, Machine Learning, and AI Systems & Applications
SHI Lab
Checking spelling of form elements

Checking spelling of form elements. You can check the source files of external workflows/reports and configuration files

СКБ Контур (команда 1с) 15 Sep 12, 2022
Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Hans Alemão 4 Jul 20, 2022
This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

About spellchecker.py Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levensht

Raihan Ahmed 1 Dec 11, 2021
Simple Annotated implementation of GPT-NeoX in PyTorch

Simple Annotated implementation of GPT-NeoX in PyTorch This is a simpler implementation of GPT-NeoX in PyTorch. We have taken out several optimization

labml.ai 101 Dec 03, 2022
A versatile token stream for handwritten parsers.

Writing recursive-descent parsers by hand can be quite elegant but it's often a bit more verbose than expected, especially when it comes to handling indentation and reporting proper syntax errors. Th

Valentin Berlier 8 Nov 30, 2022
💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

Explosion 24.9k Jan 02, 2023
GPT-2 Model for Leetcode Questions in python

Leetcode using AI 🤖 GPT-2 Model for Leetcode Questions in python New demo here: https://huggingface.co/spaces/gagan3012/project-code-py Note: the Ans

Gagan Bhatia 100 Dec 12, 2022
LeBenchmark: a reproducible framework for assessing SSL from speech

LeBenchmark: a reproducible framework for assessing SSL from speech

11 Nov 30, 2022
A simple word search made in python

Word Search Puzzle A simple word search made in python Usage $ python3 main.py -h usage: main.py [-h] [-c] [-f FILE] Generates a word s

Magoninho 16 Mar 10, 2022
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
A multi-lingual approach to AllenNLP CoReference Resolution along with a wrapper for spaCy.

Crosslingual Coreference Coreference is amazing but the data required for training a model is very scarce. In our case, the available training for non

Pandora Intelligence 71 Jan 04, 2023
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines

spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t

Kenneth Enevoldsen 32 Dec 29, 2022
👄 The most accurate natural language detection library for Python, suitable for long and short text alike

1. What does this library do? Its task is simple: It tells you which language some provided textual data is written in. This is very useful as a prepr

Peter M. Stahl 334 Dec 30, 2022
Code for paper "Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features"

Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features Train python main.py --dataset brazil-flights C

wang zhang 0 Jun 28, 2022
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 408 Dec 29, 2022
Applied Natural Language Processing in the Enterprise - An O'Reilly Media Publication

Applied Natural Language Processing in the Enterprise This is the companion repo for Applied Natural Language Processing in the Enterprise, an O'Reill

Applied Natural Language Processing in the Enterprise 95 Jan 05, 2023
This repository contains data used in the NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deployment in Text to Speech Systems

Proteno This is the data release associated with the corresponding NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deploymen

37 Dec 04, 2022
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective

InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective This is the official code base for our ICLR 2021 paper

AI Secure 71 Nov 25, 2022
BERT Attention Analysis

BERT Attention Analysis This repository contains code for What Does BERT Look At? An Analysis of BERT's Attention. It includes code for getting attent

Kevin Clark 401 Dec 11, 2022