Applied Natural Language Processing in the Enterprise - An O'Reilly Media Publication

Overview

Applied Natural Language Processing in the Enterprise

This is the companion repo for Applied Natural Language Processing in the Enterprise, an O'Reilly Media publication by Ankur A. Patel and Ajay Uppili Arasanipalai. Here, you will find all the source code from the book, published here on GitHub for your convenience.

Follow the steps below to get started with setting up your environment and running the code examples.

Setup

To install all the required libraries and dependencies, run the following command:

pip install nlpbook

However, the recommended approach is to use conda, a cross-platform, language-agnostic package manager that automatically handles dependency conflicts.

If you have not already, install the Miniforge distribution of Python 3.8 based on your OS. If you are on Windows, you can choose the Anaconda distribution of Python 3.8 instead of the Miniforge distribution, if you wish to.

Once conda is installed, run the following command:

conda install -c nlpbook nlpbook

Alternatively, if you'd like to keep your environment for this book isolated from the rest of your system (which we highly recommend), run the following commands:

conda create -n nlpbook
conda activate nlpbook
conda install -c nlpbook nlpbook

Then run conda activate nlpbook every time you want to return to your environment. To exit the environment, run conda deactivate.

Next, install the spaCy models.

python -m spacy download en_core_web_sm
python -m spacy download en_core_web_lg
python -m spacy download en_core_web_trf

Setup Environment Directly

If you're interested in setting up an environment to quickly get up and running with the code for this book, run the following commands from the root of this repo (please see the "Getting the Code" section below on how to set up the repo first).

conda env create --file environment.yml
conda activate nlpbook

You can also grab all the dependacies via pip:

pip install -r requirements.txt

Getting the Code

All publicly released code is in this repository. The simplest way to get started is via Git:

git clone https://github.com/nlpbook/nlpbook.git

If you're on Windows or another platform that doesn't already have git installed, you may need to obtain a Git client.

If you want a specific version to match the copy of the book you have (this can occasionally change), you can find previous versions on the releases page.

Getting the Data

Next, download data from AWS S3 (the data files are too large to store and access on Github).

aws s3 cp s3://applied-nlp-book/data/ data --recursive --no-sign-request
aws s3 cp s3://applied-nlp-book/models/ag_dataset/ models/ag_dataset --recursive --no-sign-request

How This Repo is Organized

Each chapter in the book has a corresponding notebook in the root of this project repository. They are named chXX.ipynb for the chapter XX. The appendices are named apXX.ipynb.

Note: This repo only contains the code for the chapters, not the actual text in the book. For the complete text, please purchase a copy of the book. Chapters 1, 2, and 3 have been open-sourced, courtesy of O'Reilly and the authors.

Once you'd navigated to the nlpbook project directory, you can lauch a Jupyter client such as Jupyter Lab, Jupyter Notebooks, or VS Code to view and run the notebooks.

Contributions and Errata

We welcome any suggestions, feedback, and errata from readers. If you notice anything that seems off in the book or could use improvement, we've love to hear from you. Feel free to submit an issue here on GitHub or on our errata page.

Copyright Notice

This material is made available by the Creative Commons Attribution-Noncommercial-No Derivatives 4.0 International Public License.

Note: You are free to use the code in accordance with the MIT license, but you are not allowed to redistribute or sell any of the text presented in chapters 1, 2, and 3, which have been open-sourced for the benefit of the community. Please consider purchasing a copy of the book if you are interested in reading the text that accompanies the code presented in this repo.

You might also like...
💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.

State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o

A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. IMPORTANT: (30.08.2020) We moved our models

State of the Art Natural Language Processing

Spark NLP: State of the Art Natural Language Processing Spark NLP is a Natural Language Processing library built on top of Apache Spark ML. It provide

Basic Utilities for PyTorch Natural Language Processing (NLP)

Basic Utilities for PyTorch Natural Language Processing (NLP) PyTorch-NLP, or torchnlp for short, is a library of basic utilities for PyTorch NLP. tor

A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow.  This is part of the CASL project: http://casl-project.ai/
Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow. This is part of the CASL project: http://casl-project.ai/

Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides

DELTA is a deep learning based natural language and speech processing platform.
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

Comments
  • Download failed for train_prepared.csv

    Download failed for train_prepared.csv

    download failed: s3://applied-nlp-book/data/ag_dataset/prepared/train_prepared.csv to data/train_prepared.csv An error occurred (AccessDenied) when calling the GetObject operation: Access Denied

    opened by sharma-ji 2
  • Chapter 05: data contains no attribute

    Chapter 05: data contains no attribute "Field"

    In chapter 05 when setting up the fields for training an Embedding on IMDB data you propose:

    TEXT = data.Field(lower=True, include_lengths=True, \
    batch_first=False, tokenize='spacy')
    LABEL = data.LabelField()
    

    However, data has not been defined yet. The module data imported from torchtext.__all__ does not contain an attribute Field. In the sources of torchtext I couldn't find it either.

    Can you advise or define data ?

    My Python version: 1.9.0 My Torchtext version: 0.10.0

    opened by iNLyze 1
  • No 'data' folder in Ch. 1

    No 'data' folder in Ch. 1

    Hello,

    I purchased your book and started reading Ch.1. Great book so far. I tried to emulate what is written in your book and ipynb. But there is no folder "data" that can retrieve Jeopardy questions. I guess this kind of incompleteness will not be the last even though I am reading your first chapter. Could you run your notebooks in a new environment and check what is missing? Thank you in advance. It would be an option to make your notebooks run in Colab. Then, you can write a setup file at the beginning of each chapter and users won't have issues running the scripts.

    opened by knslee07 1
Releases(v1.0.0)
  • v1.0.0(May 29, 2021)

    This is the initial public release of the source code for "Applied Natural Language Processing in the Enterprise" by Ankur A. Patel and Ajay Uppili Arasanipalai.

    Source code(tar.gz)
    Source code(zip)
Owner
Applied Natural Language Processing in the Enterprise
An O'Reilly Media book by Ankur A. Patel and Ajay Uppili Arasanipalai
Applied Natural Language Processing in the Enterprise
NeoDays-based tileset for the roguelike CDDA (Cataclysm Dark Days Ahead)

NeoDaysPlus Reduced contrast, expanded, and continuously developed version of the CDDA tileset NeoDays that's being completed with new sprites for mis

0 Nov 12, 2022
Repository for the paper: VoiceMe: Personalized voice generation in TTS

🗣 VoiceMe: Personalized voice generation in TTS Abstract Novel text-to-speech systems can generate entirely new voices that were not seen during trai

Pol van Rijn 80 Dec 29, 2022
Top2Vec is an algorithm for topic modeling and semantic search.

Top2Vec is an algorithm for topic modeling and semantic search. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors.

Dimo Angelov 2.4k Jan 06, 2023
AI-Broad-casting - AI Broad casting with python

Basic Code 1. Use The Code Configuration Environment conda create -n code_base p

Simple Annotated implementation of GPT-NeoX in PyTorch

Simple Annotated implementation of GPT-NeoX in PyTorch This is a simpler implementation of GPT-NeoX in PyTorch. We have taken out several optimization

labml.ai 101 Dec 03, 2022
ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python)

ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python) 日本語は以下に続きます (Japanese follows) English: This book is written in Japanese and primaril

Ryuichi Yamamoto 189 Dec 29, 2022
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 797 Dec 26, 2022
Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
Natural Language Processing library built with AllenNLP 🌲🌱

Custom Natural Language Processing with big and small models 🌲🌱

Recognai 65 Sep 13, 2022
Natural Language Processing with transformers

we want to create a repo to illustrate usage of transformers in chinese

Datawhale 763 Dec 27, 2022
A versatile token stream for handwritten parsers.

Writing recursive-descent parsers by hand can be quite elegant but it's often a bit more verbose than expected, especially when it comes to handling indentation and reporting proper syntax errors. Th

Valentin Berlier 8 Nov 30, 2022
MiCECo - Misskey Custom Emoji Counter

MiCECo Misskey Custom Emoji Counter Introduction This little script counts custo

7 Dec 25, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

Justin Terry 32 Nov 09, 2021
Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer

MT5_paddle Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer English | 简体中文 mT5: A Massively

2 Oct 17, 2021
Words-per-minute - A terminal app written in python utilizing the curses module that tests the user's ability to type

words-per-minute A terminal app written in python utilizing the curses module th

Tanim Islam 1 Jan 14, 2022
Framework for fine-tuning pretrained transformers for Named-Entity Recognition (NER) tasks

NERDA Not only is NERDA a mesmerizing muppet-like character. NERDA is also a python package, that offers a slick easy-to-use interface for fine-tuning

Ekstra Bladet 141 Dec 30, 2022
All the code I wrote for Overwatch-related projects that I still own the rights to.

overwatch_shit.zip This is (eventually) going to contain all the software I wrote during my five-year imprisonment stay playing Overwatch. I'll be add

zkxjzmswkwl 2 Dec 31, 2021
构建一个多源(公众号、RSS)、干净、个性化的阅读环境

2C 构建一个多源(公众号、RSS)、干净、个性化的阅读环境 作为一名微信公众号的重度用户,公众号一直被我设为汲取知识的地方。随着使用程度的增加,相信大家或多或少会有一个比较头疼的问题——广告问题。 假设你关注的公众号有十来个,若一个公众号两周接一次广告,理论上你会面临二十多次广告,实际上会更多,运

howie.hu 678 Dec 28, 2022
NLTK Source

Natural Language Toolkit (NLTK) NLTK -- the Natural Language Toolkit -- is a suite of open source Python modules, data sets, and tutorials supporting

Natural Language Toolkit 11.4k Jan 04, 2023