BERT Attention Analysis

Overview

BERT Attention Analysis

This repository contains code for What Does BERT Look At? An Analysis of BERT's Attention. It includes code for getting attention maps from BERT and writing them to disk, analyzing BERT's attention in general (sections 3 and 6 of the paper), and comparing its attention to dependency syntax (sections 4.2 and 5). We will add the code for the coreference resolution analysis (section 4.3 of the paper) soon!

Requirements

For extracting attention maps from text:

Additional requirements for the attention analysis:

Attention Analysis

Syntax_Analysis.ipynb and General_Analysis.ipynb contain code for analyzing BERT's attention, including reproducing the figures and tables in the paper.

You can download the data needed to run the notebooks (including BERT attention maps on Wikipedia and the Penn Treebank) from here. However, note that the Penn Treebank annotations are not freely available, so the Penn Treebank data only includes dummy labels. If you want to run the analysis on your own data, you can use the scripts described below to extract BERT attention maps.

Extracting BERT Attention Maps

We provide a script for running BERT over text and writing the resulting attention maps to disk. The input data should be a JSON file containing a list of dicts, each one corresponding to a single example to be passed in to BERT. Each dict must contain exactly one of the following fields:

  • "text": A string.
  • "words": A list of strings. Needed if you want word-level rather than token-level attention.
  • "tokens": A list of strings corresponding to BERT wordpiece tokenization.

If the present field is "tokens," the script expects [CLS]/[SEP] tokens to be already added; otherwise it adds these tokens to the beginning/end of the text automatically. Note that if an example is longer than max_sequence_length tokens after BERT wordpiece tokenization, attention maps will not be extracted for it. Attention extraction adds two additional fields to each dict:

  • "attns": A numpy array of size [num_layers, heads_per_layer, sequence_length, sequence_length] containing attention weights.
  • "tokens": If "tokens" was not already provided for the example, the BERT-wordpiece-tokenized text (list of strings).

Other fields already in the feature dicts will be preserved. For example if each dict has a tags key containing POS tags, they will stay in the data after attention extraction so they can be used when analyzing the data.

Attention extraction is run with

python extract_attention.py --preprocessed_data_file 
   
     --bert_dir 
    

    
   

The following optional arguments can also be added:

  • --max_sequence_length: Maximum input sequence length after tokenization (default is 128).
  • --batch_size: Batch size when running BERT over examples (default is 16).
  • --debug: Use a tiny BERT model for fast debugging.
  • --cased: Do not lowercase the input text.
  • --word_level: Compute word-level instead of token-level attention (see Section 4.1 of the paper).

The feature dicts with added attention maps (numpy arrays with shape [n_layers, n_heads_per_layer, n_tokens, n_tokens]) are written to _attn.pkl

Pre-processing Scripts

We include two pre-processing scripts for going from a raw data file to JSON that can be supplied to attention_extractor.py.

preprocess_unlabeled.py does BERT-pre-training-style preprocessing for unlabeled text (i.e, taking two consecutive text spans, truncating them so they are at most max_sequence_length tokens, and adding [CLS]/[SEP] tokens). Each line of the input data file should be one sentence. Documents should be separated by empty lines. Example usage:

python preprocess_unlabeled.py --data-file $ATTN_DATA_DIR/unlabeled.txt --bert-dir $ATTN_DATA_DIR/uncased_L-12_H-768_A-12

will create the file $ATTN_DATA_DIR/unlabeled.json containing pre-processed data. After pre-processing, you can run extract_attention.py to get attention maps, e.g.,

python extract_attention.py --preprocessed-data-file $ATTN_DATA_DIR/unlabeled.json --bert-dir $ATTN_DATA_DIR/uncased_L-12_H-768_A-12

preprocess_depparse.py pre-processes dependency parsing data. Dependency parsing data should consist of two files train.txt and dev.txt under a common directory. Each line in the files should contain a word followed by a space followed by - (e.g., 0-root). Examples should be separated by empty lines. Example usage:

python preprocess_depparse.py --data-dir $ATTN_DATA_DIR/depparse

After pre-processing, you can run extract_attention.py to get attention maps, e.g.,

python extract_attention.py --preprocessed-data-file $ATTN_DATA_DIR/depparse/dev.json --bert-dir $ATTN_DATA_DIR/uncased_L-12_H-768_A-12 --word_level

Computing Distances Between Attention Heads

head_distances.py computes the average Jenson-Shannon divergence between the attention weights of all pairs of attention heads and writes the results to disk as a numpy array of shape [n_heads, n_heads]. These distances can be used to cluster BERT's attention heads (see Section 6 and Figure 6 of the paper; code for doing this clustering is in General_Analysis.ipynb). Example usage (requires that attention maps have already been extracted):

python head_distances.py --attn-data-file $ATTN_DATA_DIR/unlabeled_attn.pkl --outfile $ATTN_DATA_DIR/head_distances.pkl

Citation

If you find the code or data helpful, please cite the original paper:

@inproceedings{clark2019what,
  title = {What Does BERT Look At? An Analysis of BERT's Attention},
  author = {Kevin Clark and Urvashi Khandelwal and Omer Levy and Christopher D. Manning},
  booktitle = {[email protected]},
  year = {2019}
}

Contact

Kevin Clark (@clarkkev).

Owner
Kevin Clark
Kevin Clark
Paddle2.x version AI-Writer

Paddle2.x 版本AI-Writer 用魔改 GPT 生成网文。Tuned GPT for novel generation.

yujun 74 Jan 04, 2023
fastai ulmfit - Pretraining the Language Model, Fine-Tuning and training a Classifier

fast.ai ULMFiT with SentencePiece from pretraining to deployment Motivation: Why even bother with a non-BERT / Transformer language model? Short answe

Florian Leuerer 26 May 27, 2022
Code for EMNLP20 paper: "ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training"

ProphetNet-X This repo provides the code for reproducing the experiments in ProphetNet. In the paper, we propose a new pre-trained language model call

Microsoft 394 Dec 17, 2022
Trains an OpenNMT PyTorch model and SentencePiece tokenizer.

Trains an OpenNMT PyTorch model and SentencePiece tokenizer. Designed for use with Argos Translate and LibreTranslate.

Argos Open Tech 61 Dec 13, 2022
Py65 65816 - Add support for the 65C816 to py65

Add support for the 65C816 to py65 Py65 (https://github.com/mnaberez/py65) is a

4 Jan 04, 2023
Shellcode antivirus evasion framework

Schrodinger's Cat Schrodinger'sCat is a Shellcode antivirus evasion framework Technical principle Please visit my blog https://idiotc4t.com/ How to us

idiotc4t 27 Jul 09, 2022
Question answering app is used to answer for a user given question from user given text.

Question answering app is used to answer for a user given question from user given text.It is created using HuggingFace's transformer pipeline and streamlit python packages.

Siva Prakash 3 Apr 05, 2022
A sentence aligner for comparable corpora

About Yalign is a tool for extracting parallel sentences from comparable corpora. Statistical Machine Translation relies on parallel corpora (eg.. eur

Machinalis 128 Aug 24, 2022
Various Algorithms for Short Text Mining

Short Text Mining in Python Introduction This package shorttext is a Python package that facilitates supervised and unsupervised learning for short te

Kwan-Yuet 466 Dec 06, 2022
Datasets of Automatic Keyphrase Extraction

This repository contains 20 annotated datasets of Automatic Keyphrase Extraction made available by the research community. Following are the datasets and the original papers that proposed them. If yo

LIAAD - Laboratory of Artificial Intelligence and Decision Support 163 Dec 23, 2022
SentAugment is a data augmentation technique for semi-supervised learning in NLP.

SentAugment SentAugment is a data augmentation technique for semi-supervised learning in NLP. It uses state-of-the-art sentence embeddings to structur

Meta Research 363 Dec 30, 2022
Python library for parsing resumes using natural language processing and machine learning

CVParser Python library for parsing resumes using natural language processing and machine learning. Setup Installation on Linux and Mac OS Follow the

nafiu 0 Jul 29, 2021
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022
ADCS cert template modification and ACL enumeration

Purpose This tool is designed to aid an operator in modifying ADCS certificate templates so that a created vulnerable state can be leveraged for privi

Fortalice Solutions, LLC 78 Dec 12, 2022
Simple multilingual lemmatizer for Python, especially useful for speed and efficiency

Simplemma: a simple multilingual lemmatizer for Python Purpose Lemmatization is the process of grouping together the inflected forms of a word so they

Adrien Barbaresi 70 Dec 29, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

286 Jan 02, 2023
ConvBERT-Prod

ConvBERT 目录 0. 仓库结构 1. 简介 2. 数据集和复现精度 3. 准备数据与环境 3.1 准备环境 3.2 准备数据 3.3 准备模型 4. 开始使用 4.1 模型训练 4.2 模型评估 4.3 模型预测 5. 模型推理部署 5.1 基于Inference的推理 5.2 基于Serv

yujun 7 Apr 08, 2022
An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.)

VizSeq is a Python toolkit for visual analysis on text generation tasks like machine translation, summarization, image captioning, speech translation

Facebook Research 409 Oct 28, 2022
State of the Art Natural Language Processing

Spark NLP: State of the Art Natural Language Processing Spark NLP is a Natural Language Processing library built on top of Apache Spark ML. It provide

John Snow Labs 3k Jan 05, 2023
Analyse japanese ebooks using MeCab to determine the difficulty level for japanese learners

japanese-ebook-analysis This aim of this project is to make analysing the contents of a japanese ebook easy and streamline the process for non-technic

Christoffer Aakre 14 Jul 23, 2022