BERT Attention Analysis

Overview

BERT Attention Analysis

This repository contains code for What Does BERT Look At? An Analysis of BERT's Attention. It includes code for getting attention maps from BERT and writing them to disk, analyzing BERT's attention in general (sections 3 and 6 of the paper), and comparing its attention to dependency syntax (sections 4.2 and 5). We will add the code for the coreference resolution analysis (section 4.3 of the paper) soon!

Requirements

For extracting attention maps from text:

Additional requirements for the attention analysis:

Attention Analysis

Syntax_Analysis.ipynb and General_Analysis.ipynb contain code for analyzing BERT's attention, including reproducing the figures and tables in the paper.

You can download the data needed to run the notebooks (including BERT attention maps on Wikipedia and the Penn Treebank) from here. However, note that the Penn Treebank annotations are not freely available, so the Penn Treebank data only includes dummy labels. If you want to run the analysis on your own data, you can use the scripts described below to extract BERT attention maps.

Extracting BERT Attention Maps

We provide a script for running BERT over text and writing the resulting attention maps to disk. The input data should be a JSON file containing a list of dicts, each one corresponding to a single example to be passed in to BERT. Each dict must contain exactly one of the following fields:

  • "text": A string.
  • "words": A list of strings. Needed if you want word-level rather than token-level attention.
  • "tokens": A list of strings corresponding to BERT wordpiece tokenization.

If the present field is "tokens," the script expects [CLS]/[SEP] tokens to be already added; otherwise it adds these tokens to the beginning/end of the text automatically. Note that if an example is longer than max_sequence_length tokens after BERT wordpiece tokenization, attention maps will not be extracted for it. Attention extraction adds two additional fields to each dict:

  • "attns": A numpy array of size [num_layers, heads_per_layer, sequence_length, sequence_length] containing attention weights.
  • "tokens": If "tokens" was not already provided for the example, the BERT-wordpiece-tokenized text (list of strings).

Other fields already in the feature dicts will be preserved. For example if each dict has a tags key containing POS tags, they will stay in the data after attention extraction so they can be used when analyzing the data.

Attention extraction is run with

python extract_attention.py --preprocessed_data_file 
   
     --bert_dir 
    

    
   

The following optional arguments can also be added:

  • --max_sequence_length: Maximum input sequence length after tokenization (default is 128).
  • --batch_size: Batch size when running BERT over examples (default is 16).
  • --debug: Use a tiny BERT model for fast debugging.
  • --cased: Do not lowercase the input text.
  • --word_level: Compute word-level instead of token-level attention (see Section 4.1 of the paper).

The feature dicts with added attention maps (numpy arrays with shape [n_layers, n_heads_per_layer, n_tokens, n_tokens]) are written to _attn.pkl

Pre-processing Scripts

We include two pre-processing scripts for going from a raw data file to JSON that can be supplied to attention_extractor.py.

preprocess_unlabeled.py does BERT-pre-training-style preprocessing for unlabeled text (i.e, taking two consecutive text spans, truncating them so they are at most max_sequence_length tokens, and adding [CLS]/[SEP] tokens). Each line of the input data file should be one sentence. Documents should be separated by empty lines. Example usage:

python preprocess_unlabeled.py --data-file $ATTN_DATA_DIR/unlabeled.txt --bert-dir $ATTN_DATA_DIR/uncased_L-12_H-768_A-12

will create the file $ATTN_DATA_DIR/unlabeled.json containing pre-processed data. After pre-processing, you can run extract_attention.py to get attention maps, e.g.,

python extract_attention.py --preprocessed-data-file $ATTN_DATA_DIR/unlabeled.json --bert-dir $ATTN_DATA_DIR/uncased_L-12_H-768_A-12

preprocess_depparse.py pre-processes dependency parsing data. Dependency parsing data should consist of two files train.txt and dev.txt under a common directory. Each line in the files should contain a word followed by a space followed by - (e.g., 0-root). Examples should be separated by empty lines. Example usage:

python preprocess_depparse.py --data-dir $ATTN_DATA_DIR/depparse

After pre-processing, you can run extract_attention.py to get attention maps, e.g.,

python extract_attention.py --preprocessed-data-file $ATTN_DATA_DIR/depparse/dev.json --bert-dir $ATTN_DATA_DIR/uncased_L-12_H-768_A-12 --word_level

Computing Distances Between Attention Heads

head_distances.py computes the average Jenson-Shannon divergence between the attention weights of all pairs of attention heads and writes the results to disk as a numpy array of shape [n_heads, n_heads]. These distances can be used to cluster BERT's attention heads (see Section 6 and Figure 6 of the paper; code for doing this clustering is in General_Analysis.ipynb). Example usage (requires that attention maps have already been extracted):

python head_distances.py --attn-data-file $ATTN_DATA_DIR/unlabeled_attn.pkl --outfile $ATTN_DATA_DIR/head_distances.pkl

Citation

If you find the code or data helpful, please cite the original paper:

@inproceedings{clark2019what,
  title = {What Does BERT Look At? An Analysis of BERT's Attention},
  author = {Kevin Clark and Urvashi Khandelwal and Omer Levy and Christopher D. Manning},
  booktitle = {[email protected]},
  year = {2019}
}

Contact

Kevin Clark (@clarkkev).

Owner
Kevin Clark
Kevin Clark
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
Ελληνικά νέα (Python script) / Greek News Feed (Python script)

Ελληνικά νέα (Python script) / Greek News Feed (Python script) Ελληνικά English Το 2017 είχα υλοποιήσει ένα Python script για να εμφανίζει τα τωρινά ν

Loren Kociko 1 Jun 14, 2022
A flask application to predict the speech emotion of any .wav file.

This is a speech emotion recognition app. It will allow you to train a modular MLP model with the RAVDESS dataset, and then use that model with a flask application to predict the speech emotion of an

Aryan Vijaywargia 2 Dec 15, 2021
☀️ Measuring the accuracy of BBC weather forecasts in Honolulu, USA

Accuracy of BBC Weather forecasts for Honolulu This repository records the forecasts made by BBC Weather for the city of Honolulu, USA. Essentially, t

Max Halford 12 Oct 15, 2022
Tools for curating biomedical training data for large-scale language modeling

Tools for curating biomedical training data for large-scale language modeling

BigScience Workshop 242 Dec 25, 2022
Natural Language Processing Specialization

Natural Language Processing Specialization In this folder, Natural Language Processing Specialization projects and notes can be found. WHAT I LEARNED

Kaan BOKE 3 Oct 06, 2022
Collection of scripts to pinpoint obfuscated code

Obfuscation Detection (v1.0) Author: Tim Blazytko Automatically detect control-flow flattening and other state machines Description: Scripts and binar

Tim Blazytko 230 Nov 26, 2022
Installation, test and evaluation of Scribosermo speech-to-text engine

Scribosermo STT Setup Scribosermo is a LGPL licensed, open-source speech recognition engine to "Train fast Speech-to-Text networks in different langua

Florian Quirin 3 Jun 20, 2022
Conditional probing: measuring usable information beyond a baseline

Conditional probing: measuring usable information beyond a baseline

John Hewitt 20 Dec 15, 2022
👑 spaCy building blocks and visualizers for Streamlit apps

spacy-streamlit: spaCy building blocks for Streamlit apps This package contains utilities for visualizing spaCy models and building interactive spaCy-

Explosion 620 Dec 29, 2022
DAGAN - Dual Attention GANs for Semantic Image Synthesis

Contents Semantic Image Synthesis with DAGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evalu

Hao Tang 104 Oct 08, 2022
2021语言与智能技术竞赛:机器阅读理解任务

LICS2021 MRC 1. 项目&任务介绍 本项目基于官方给定的baseline(DuReader-Checklist-BASELINE)进行二次改造,对整个代码框架做了简单的重构,对核心网络结构添加了注释,解耦了数据读取的模块,并添加了阈值确认的功能,一些小的细节也做了改进。 本次任务为202

roar 29 Dec 05, 2022
PUA Programming Language written in Python.

pua-lang PUA Programming Language written in Python. Installation git clone https://github.com/zhaoyang97/pua-lang.git cd pua-lang pip install . Try

zy 4 Feb 19, 2022
Chinese Grammatical Error Diagnosis

nlp-CGED Chinese Grammatical Error Diagnosis 中文语法纠错研究 基于序列标注的方法 所需环境 Python==3.6 tensorflow==1.14.0 keras==2.3.1 bert4keras==0.10.6 笔者使用了开源的bert4keras

12 Nov 25, 2022
HuggingTweets - Train a model to generate tweets

HuggingTweets - Train a model to generate tweets Create in 5 minutes a tweet generator based on your favorite Tweeter Make my own model with the demo

Boris Dayma 318 Jan 04, 2023
Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

CvarAdversarialRL Official code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning". Initial setup Create a virtual

Mathieu Godbout 1 Nov 19, 2021
Gathers machine learning and Tensorflow deep learning models for NLP problems, 1.13 < Tensorflow < 2.0

NLP-Models-Tensorflow, Gathers machine learning and tensorflow deep learning models for NLP problems, code simplify inside Jupyter Notebooks 100%. Tab

HUSEIN ZOLKEPLI 1.7k Dec 30, 2022
TPlinker for NER 中文/英文命名实体识别

本项目是参考 TPLinker 中HandshakingTagging思想,将TPLinker由原来的关系抽取(RE)模型修改为命名实体识别(NER)模型。

GodK 113 Dec 28, 2022
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.

Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da

Jeff Johannsen 3 Nov 27, 2022
Repo for Enhanced Seq2Seq Autoencoder via Contrastive Learning for Abstractive Text Summarization

ESACL: Enhanced Seq2Seq Autoencoder via Contrastive Learning for AbstractiveText Summarization This repo is for our paper "Enhanced Seq2Seq Autoencode

Rachel Zheng 14 Nov 01, 2022