Py65 65816 - Add support for the 65C816 to py65

Overview

Add support for the 65C816 to py65

Py65 (https://github.com/mnaberez/py65) is a great simulator for the 6502. Recently I added support for interrupts (https://github.com/tmr4/py65_int) and a debug window (https://github.com/tmr4/py65_debug_window). After success with these modifications, I decided to try adding support for the 65C816. Luckily, py65 is open-source and enhancing it isn't very difficult.

This repository provides a framework for adding support for the 65C816 to py65. I've included the modules I've developed to simulate and test the 65C816. As noted below, a few modifications are needed to the core py65 modules as well.

Screenshot

Screenshot of py65 running Liara Forth on a simulated 65C816

Contents

I've included the main device module, mpu65c816.py, to add simulation support for the 65C816 to py65. I've also include several modules for testing the 65C816 simulation. These include the main unit test module, test_mpu65c816.py, and support modules, test_mpu65816_Common6502.py and test_mpu65816_Common65c02.py, derived largely from similarly named py65 test modules, to test the 65C816 emulation mode simulation. I've also included a binary file, liara.bin, that I modified from Scot W. Stevenson's Liara Forth (https://github.com/scotws/LiaraForth) to work with py65 simulating the 65C816. Note that I'm a Python newbie and appreciate any feedback to make these better.

  • mpu65c816.py

The 65C816 device.

  • test_mpu65c816.py

The main unit test module for the 65C816.

  • test_mpu65816_Common6502.py

Unit tests for 65C816 emulation mode.

  • test_mpu65816_Common65c02.py

Additional 65C02 based unit tests for 65C816 emulation mode.

  • liara.bin

A modified version of Scot W. Stevenson's Liara Forth (https://github.com/scotws/LiaraForth) for testing. Liara Forth is designed to run on the Western Design Center's W65C265SXB development board (https://www.westerndesigncenter.com/wdc/documentation/W65C265SXB.pdf). I've modified the Liara Forth binary to interface with alternate I/O addresses rather than those used by the development board.

Modifications to core py65 modules

The following modifications are needed for py65 to simulate the 65C816:

  1. monitor.py
  • Add a reference to new 65C816 MPU class from devices.mpu65c816 import MPU as CMOS65C816
  • Add the '65C816': CMOS65C816 pair to the Microprocessors dictionary.

License

The mpu65c816.py, test_mpu65816_Common6502.py and test_mpu65816_Common65c02.py modules contain large portions of code from or derived from py65 which is covered by a BSD 3-Clause License. I've included that license as required.

Running the 65C816 Unit Tests

You can run the unit tests with python -m unittest test_mpu65c816.py. The 65C816 simulation passes the py65 6502- and 65C02-based test (507 in total) in emulation mode. Some of tests were modified to run properly with the new device. I still have to create the tests for native mode operations (not a small task). I expect these to take some time and I expect these will turn up many errors in my code.

Testing the 65C816 Simulation with Liara Forth

It wasn't easy to find a sizable program to test with the new 65C816 simulation. You can run the slightly modified version of Liara Forth with python monitor.py -m 65c816 -l liara.bin -g 5000 -i fff0 -o fff1.

Limitations

  1. The new 65C816 device is largely untested. I plan to update it as I work on supporting hardware and code. Use at your own risk. Some know issues:
  • FIXED: ROL and ROR haven't been updated for a 16 bit accumulator.
  • Extra cycle counts haven't been considered for any new to 65816 opcodes.
  • ADC and SBC in decimal mode are likely invalid in 16 bit.
  • Native mode hasn't been tested outside of bank 0. Assume it will fail for this until it is tested. Currently only 3 banks of memory are modeled, by py65 default, but this can easily be changed.
  • The simulation is meant to emulate the actual W65C816. Modelling so far has been based on the 65816 Programming Manual only. I intend to test at least some code against the W65C265SXB development board.
  • Currently no way to break to the py65 monitor.
  • Register wrapping of Direct page addressing modes need tested.
  1. While Liara Forth runs in py65 with the new 65C816 device, it isn't hard to make it crash. I believe this is due to my code, rather than Liara Forth, even though it is marked as an ALPHA version. Liara Forth runs entirely in bank 0. There is no way to break to the monitor since Liara Forth was designed to run on hardware only. It can only be ended with a control-C.

  2. I've successfully run a non-interrupt version of my own 6502 Forth in the new 65C816 device in emulation mode. This isn't surprising since much of the code comes from py65 6502 and 65C02 devices. I expect an interrupt version of it will run as well, but I haven't tested this. I expect that many 6502 programs will run in emulation mode. Note however, that there are differences between the 65C816 operating in emulation mode and the 6502/65C02 that could cause problems with your program.

Status

  • Initial commit: January 11, 2022
  • Successfully tested my 65C02 Forth in emulation mode
  • Was able to run Liara Forth in native mode in block 0.
    • FIXED: (Many words cause it to crash (likely due to one of the limitations listed above).)
    • Currently all numbers print out as 0. Unclear why.

Next Steps

  • Resolve simulator issues with running Liara Forth. I view this as a robust test of the 65816 simulator, other than bank switching, which Liara Forth doesn't handle out of the box. Some hardware specific Liara Forth features will not work with the simulator (KEY? for example which is hardwired to a W65C265SXB development board specific address indicating whether a key has been pressed).
  • Add native mode unit tests.
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Jan 08, 2023
GPT-3 command line interaction

Writer_unblock Straight-forward command line interfacing with GPT-3. Finding yourself stuck at a conceptual stage? Spinning your wheels needlessly on

Seth Nuzum 6 Feb 10, 2022
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

Maksim Terpilowski 49 Dec 30, 2022
Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics.

Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics. Jury offers a smooth and easy-to-use interface. It uses datasets for underlying metric computa

Open Business Software Solutions 129 Jan 06, 2023
Transcribing audio files using Hugging Face's implementation of Wav2Vec2 + "chain-linking" NLP tasks to combine speech-to-text with downstream tasks like translation and summarisation.

PART 2: CHAIN LINKING AUDIO-TO-TEXT NLP TASKS 2A: TRANSCRIBE-TRANSLATE-SENTIMENT-ANALYSIS In notebook3.0, I demo a simple workflow to: transcribe a lo

Chua Chin Hon 30 Jul 13, 2022
Optimal Transport Tools (OTT), A toolbox for all things Wasserstein.

Optimal Transport Tools (OTT), A toolbox for all things Wasserstein. See full documentation for detailed info on the toolbox. The goal of OTT is to pr

OTT-JAX 255 Dec 26, 2022
Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch

N-Grammer - Pytorch Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch Install $ pip install n-grammer-pytorch Usage

Phil Wang 66 Dec 29, 2022
Rhyme with AI

Local development Create a conda virtual environment and activate it: conda env create --file environment.yml conda activate rhyme-with-ai Install the

GoDataDriven 28 Nov 21, 2022
Auto translate textbox from Japanese to English or Indonesia

priconne-auto-translate Auto translate textbox from Japanese to English or Indonesia How to use Install python first, Anaconda is recommended Install

Aji Priyo Wibowo 5 Aug 25, 2022
A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework.

Unpacker Karton Service A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework. This project is

c3rb3ru5 45 Jan 05, 2023
KoBERT - Korean BERT pre-trained cased (KoBERT)

KoBERT KoBERT Korean BERT pre-trained cased (KoBERT) Why'?' Training Environment Requirements How to install How to use Using with PyTorch Using with

SK T-Brain 1k Jan 02, 2023
Repo for Enhanced Seq2Seq Autoencoder via Contrastive Learning for Abstractive Text Summarization

ESACL: Enhanced Seq2Seq Autoencoder via Contrastive Learning for AbstractiveText Summarization This repo is for our paper "Enhanced Seq2Seq Autoencode

Rachel Zheng 14 Nov 01, 2022
Code for CVPR 2021 paper: Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning

Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning This is the PyTorch companion code for the paper: A

Amazon 69 Jan 03, 2023
This repository describes our reproducible framework for assessing self-supervised representation learning from speech

LeBenchmark: a reproducible framework for assessing SSL from speech Self-Supervised Learning (SSL) using huge unlabeled data has been successfully exp

49 Aug 24, 2022
WikiPron - a command-line tool and Python API for mining multilingual pronunciation data from Wiktionary

WikiPron WikiPron is a command-line tool and Python API for mining multilingual pronunciation data from Wiktionary, as well as a database of pronuncia

213 Jan 01, 2023
Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU

GPU Docker NLP Application Deployment Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU, to setup the enviroment on

Ritesh Yadav 9 Oct 14, 2022
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

Bithiah Yuan 61 Sep 18, 2022
Code for the Findings of NAACL 2022(Long Paper): AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks

AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks arXiv link: upcoming To be published in Findings of NA

Allen 16 Nov 12, 2022
Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Ubiquitous Knowledge Processing Lab 9.1k Jan 02, 2023