HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

Overview

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

Jungil Kong, Jaehyeon Kim, Jaekyoung Bae

In our paper, we proposed HiFi-GAN: a GAN-based model capable of generating high fidelity speech efficiently.
We provide our implementation and pretrained models as open source in this repository.

Abstract : Several recent work on speech synthesis have employed generative adversarial networks (GANs) to produce raw waveforms. Although such methods improve the sampling efficiency and memory usage, their sample quality has not yet reached that of autoregressive and flow-based generative models. In this work, we propose HiFi-GAN, which achieves both efficient and high-fidelity speech synthesis. As speech audio consists of sinusoidal signals with various periods, we demonstrate that modeling periodic patterns of an audio is crucial for enhancing sample quality. A subjective human evaluation (mean opinion score, MOS) of a single speaker dataset indicates that our proposed method demonstrates similarity to human quality while generating 22.05 kHz high-fidelity audio 167.9 times faster than real-time on a single V100 GPU. We further show the generality of HiFi-GAN to the mel-spectrogram inversion of unseen speakers and end-to-end speech synthesis. Finally, a small footprint version of HiFi-GAN generates samples 13.4 times faster than real-time on CPU with comparable quality to an autoregressive counterpart.

Visit our demo website for audio samples.

Pre-requisites

  1. Python >= 3.6
  2. Clone this repository.
  3. Install python requirements. Please refer requirements.txt
  4. Download and extract the LJ Speech dataset. And move all wav files to LJSpeech-1.1/wavs

Training

python train.py --config config_v1.json

To train V2 or V3 Generator, replace config_v1.json with config_v2.json or config_v3.json.
Checkpoints and copy of the configuration file are saved in cp_hifigan directory by default.
You can change the path by adding --checkpoint_path option.

Validation loss during training with V1 generator.
validation loss

Pretrained Model

You can also use pretrained models we provide.
Download pretrained models
Details of each folder are as in follows:

Folder Name Generator Dataset Fine-Tuned
LJ_V1 V1 LJSpeech No
LJ_V2 V2 LJSpeech No
LJ_V3 V3 LJSpeech No
LJ_FT_T2_V1 V1 LJSpeech Yes (Tacotron2)
LJ_FT_T2_V2 V2 LJSpeech Yes (Tacotron2)
LJ_FT_T2_V3 V3 LJSpeech Yes (Tacotron2)
VCTK_V1 V1 VCTK No
VCTK_V2 V2 VCTK No
VCTK_V3 V3 VCTK No
UNIVERSAL_V1 V1 Universal No

We provide the universal model with discriminator weights that can be used as a base for transfer learning to other datasets.

Fine-Tuning

  1. Generate mel-spectrograms in numpy format using Tacotron2 with teacher-forcing.
    The file name of the generated mel-spectrogram should match the audio file and the extension should be .npy.
    Example:
    Audio File : LJ001-0001.wav
    Mel-Spectrogram File : LJ001-0001.npy
    
  2. Create ft_dataset folder and copy the generated mel-spectrogram files into it.
  3. Run the following command.
    python train.py --fine_tuning True --config config_v1.json
    
    For other command line options, please refer to the training section.

Inference from wav file

  1. Make test_files directory and copy wav files into the directory.
  2. Run the following command.
    python inference.py --checkpoint_file [generator checkpoint file path]
    

Generated wav files are saved in generated_files by default.
You can change the path by adding --output_dir option.

Inference for end-to-end speech synthesis

  1. Make test_mel_files directory and copy generated mel-spectrogram files into the directory.
    You can generate mel-spectrograms using Tacotron2, Glow-TTS and so forth.
  2. Run the following command.
    python inference_e2e.py --checkpoint_file [generator checkpoint file path]
    

Generated wav files are saved in generated_files_from_mel by default.
You can change the path by adding --output_dir option.

Acknowledgements

We referred to WaveGlow, MelGAN and Tacotron2 to implement this.

Owner
Jungil Kong
Jungil Kong
Backend for the Autocomplete platform. An AI assisted coding platform.

Introduction A custom predictor allows you to deploy your own prediction implementation, useful when the existing serving implementations don't fit yo

Tatenda Christopher Chinyamakobvu 1 Jan 31, 2022
Write Python in Urdu - اردو میں کوڈ لکھیں

UrduPython Write simple Python in Urdu. How to Use Write Urdu code in سامپل۔پے The mappings are as following: "۔": ".", "،":

Saad A. Bazaz 26 Nov 27, 2022
Unsupervised Language Modeling at scale for robust sentiment classification

** DEPRECATED ** This repo has been deprecated. Please visit Megatron-LM for our up to date Large-scale unsupervised pretraining and finetuning code.

NVIDIA Corporation 1k Nov 17, 2022
KoBERT - Korean BERT pre-trained cased (KoBERT)

KoBERT KoBERT Korean BERT pre-trained cased (KoBERT) Why'?' Training Environment Requirements How to install How to use Using with PyTorch Using with

SK T-Brain 1k Jan 02, 2023
This Project is based on NLTK It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its antonyms, its synonyms

This Project is based on NLTK(Natural Language Toolkit) It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its

SaiVenkatDhulipudi 2 Nov 17, 2021
PyTorch Implementation of the paper Single Image Texture Translation for Data Augmentation

SITT The repo contains official PyTorch Implementation of the paper Single Image Texture Translation for Data Augmentation. Authors: Boyi Li Yin Cui T

Boyi Li 52 Jan 05, 2023
Google and Stanford University released a new pre-trained model called ELECTRA

Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For furth

Yiming Cui 1.2k Dec 30, 2022
Repositório do trabalho de introdução a NLP

Trabalho da disciplina de BI NLP Repositório do trabalho da disciplina Introdução a Processamento de Linguagem Natural da pós BI-Master da PUC-RIO. Eq

Leonardo Lins 1 Jan 18, 2022
Weaviate demo with the text2vec-openai module

Weaviate demo with the text2vec-openai module This repository contains an example of how to use the Weaviate text2vec-openai module. When using this d

SeMI Technologies 11 Nov 11, 2022
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
Text Classification Using LSTM

Text classification is the task of assigning a set of predefined categories to free text. Text classifiers can be used to organize, structure, and categorize pretty much anything. For example, new ar

KrishArul26 3 Jan 03, 2023
Multilingual word vectors in 78 languages

Aligning the fastText vectors of 78 languages Facebook recently open-sourced word vectors in 89 languages. However these vectors are monolingual; mean

Babylon Health 1.2k Dec 17, 2022
端到端的长本文摘要模型(法研杯2020司法摘要赛道)

端到端的长文本摘要模型(法研杯2020司法摘要赛道)

苏剑林(Jianlin Su) 334 Jan 08, 2023
Compute distance between sequences. 30+ algorithms, pure python implementation, common interface, optional external libs usage.

TextDistance TextDistance -- python library for comparing distance between two or more sequences by many algorithms. Features: 30+ algorithms Pure pyt

Life4 3k Jan 06, 2023
Exploration of BERT-based models on twitter sentiment classifications

twitter-sentiment-analysis Explore the relationship between twitter sentiment of Tesla and its stock price/return. Explore the effect of different BER

Sammy Cui 2 Oct 02, 2022
Abhijith Neil Abraham 2 Nov 05, 2021
Unsupervised text tokenizer for Neural Network-based text generation.

SentencePiece SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation systems where the vocabu

Google 6.4k Jan 01, 2023
Speach Recognitions

easy_meeting Добро пожаловать в интерфейс сервиса автопротоколирования совещаний Easy Meeting. Website - http://cf5c-62-192-251-83.ngrok.io/ Принципиа

Maksim 3 Feb 18, 2022
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

Kay Savetz 60 Dec 25, 2022