Speach Recognitions

Overview

easy_meeting

photo_2021-10-20 12 07 05

Добро пожаловать в интерфейс сервиса автопротоколирования совещаний Easy Meeting.

Website - http://cf5c-62-192-251-83.ngrok.io/

Принципиально данный сервис можно разделить на три основных и два дополнительных шага.

К основным шагам относится:
💁 Загрузка файла в сервис;
💁 Обработка файла;
💁 Редактирование и сохранение.

Дополнительные шаги включают в себя:
🧐 Получение саммари текста
🤓 Возможность задать вопросы к тексту (возможность поиска по ключевым словам)

Первым этапом работы сервиса является загрузка в него исходного файла. Сервис Easy Meeting может принимать файл из 2-х источников: Загрузить файлы с устройства; Вставить ссылку с YouTube. Во время загрузки файла вам не нужно думать о его формате. Данный сервис работает со всеми форматами (видео/аудио).

01

Для того чтобы загрузить файл с компьютера, необходимо нажать на кнопку “Загрузить файл с устройства”, после чего появится возможность выбрать файл с диска.

02

Если у вас есть ссылка на YouTube, то выберите пункт “Укажите ссылку на YouTube”, после чего вставьте необходимую ссылку в поле.

03

Ожидайте загрузку файла.

04

После того как вы выбрали один из методов загрузки файла и загрузили его в сервис Easy Meeting, вы увидите надпись “Данные загружены! Теперь можно приступить к извлечению файла”.

Чтобы начать обработку файла и извлечение текста из аудио, нажмите кнопку “Обработать”. Начнется обработка файла, вы увидите прогресс бар, в котором будет отражено время выполнения алгоритма преобразования речи в текст.

12

После того как прогресс бар будет заполнен на 100% , появится сообщение “Текст распознан! Теперь его можно посмотреть и при необходимости отредактировать”.

Ниже вы увидите окошко, в котором будет весь распознанный текст с возможностью его редактирования.

07

Когда закончите с редактированием, то ниже данного окошка появятся две кнопки: “Скачать аудио” и “Скачать распознанный текст”.

Также в нашем сервисе предусмотрены две дополнительные функции:

  1. Функция суммаризации текста
  2. Q&A с текстом 💁

08

Для того чтобы получить краткое описание всей конференции и не читать все страницы, вы можете получить выжимку, нажав на кнопку “Получить краткое содержание”, в результате наш алгоритм предложит вам сжатую версию конференции, которой вы сможете ознакомиться с основными тезисами любой встречи.

09

Вторая не менее важная дополнительная функция доступна в интерфейсе в левой части экрана и появляется только после обработки аудио и получения полной версии текста. В данной функции вы сможете задать вопрос по тексту.

11

Например, если вы пропустили совещание и не знаете, шла ли речь о вас или нет 🤓 🙈 вы можете спросить у нейронной сети, что говорили про (конечно) Ивана Ивановича Иванова.

После того как файл обработан и все необходимые файлы скачаны, вы можете проделать эту процедуру еще раз. Для этого просто вернитесь к первому шагу выбора файла.

В связи с ограниченными ресурсами hardware, оптимальное время работы алгоритмов:

Из расчёта записи в 1 час.

  1. Загрузка файла ~2 минут
  2. Обработка файла и получение транскрибации ~ 5 минут
  3. Суммаризация текста ~ 3 минуты
  4. Q&A ~ 1-2 минуты

Для локального запуска необходимо в корневой директории проекта создать папку "models"
В нее поместить файлы находящиеся в папке models на облаке:
https://drive.google.com/drive/folders/1Bkzutf6FJf7Qm05GEf9C6Dmd05wBzjjk?usp=sharing

Далее запустить в cmd:
pip install -r requirements.txt
streamlit run app_run.py

Все глобальные переменные для моделей изменяются в config.py

Спасибо! Надеемся, вам понравился наш быстрый и удобный сервис Easy Meeting!

С уважением,
команда Teenage Mutant Ninja Turtles (TMNT)

10

Owner
Maksim
Maksim
Training open neural machine translation models

Train Opus-MT models This package includes scripts for training NMT models using MarianNMT and OPUS data for OPUS-MT. More details are given in the Ma

Language Technology at the University of Helsinki 167 Jan 03, 2023
Repository for Graph2Pix: A Graph-Based Image to Image Translation Framework

Graph2Pix: A Graph-Based Image to Image Translation Framework Installation Install the dependencies in env.yml $ conda env create -f env.yml $ conda a

18 Nov 17, 2022
Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any language

Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any

Little Endian 1 Apr 28, 2022
🤖 Basic Financial Chatbot with handoff ability built with Rasa

Financial Services Example Bot This is an example chatbot demonstrating how to build AI assistants for financial services and banking with Rasa. It in

Mohammad Javad Hossieni 4 Aug 10, 2022
Implementation of Natural Language Code Search in the project CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT-Implementation In this repo we have replicated the paper CodeBERT: A Pre-Trained Model for Programming and Natural Languages. We are interest

Tanuj Sur 4 Jul 01, 2022
ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Description: ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39

GOKHAN OZSARI 5 Dec 16, 2022
kochat

Kochat 챗봇 빌더는 성에 안차고, 자신만의 딥러닝 챗봇 애플리케이션을 만드시고 싶으신가요? Kochat을 이용하면 손쉽게 자신만의 딥러닝 챗봇 애플리케이션을 빌드할 수 있습니다. # 1. 데이터셋 객체 생성 dataset = Dataset(ood=True) #

1 Oct 25, 2021
ElasticBERT: A pre-trained model with multi-exit transformer architecture.

This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
Implementation of some unbalanced loss like focal_loss, dice_loss, DSC Loss, GHM Loss et.al

Implementation of some unbalanced loss for NLP task like focal_loss, dice_loss, DSC Loss, GHM Loss et.al Summary Here is a loss implementation reposit

121 Jan 01, 2023
A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

Ian 1 Jan 15, 2022
An end to end ASR Transformer model training repo

END TO END ASR TRANSFORMER 本项目基于transformer 6*encoder+6*decoder的基本结构构造的端到端的语音识别系统 Model Instructions 1.数据准备: 自行下载数据,遵循文件结构如下: ├── data │ ├── train │

旷视天元 MegEngine 10 Jul 19, 2022
PRAnCER is a web platform that enables the rapid annotation of medical terms within clinical notes.

PRAnCER (Platform enabling Rapid Annotation for Clinical Entity Recognition) is a web platform that enables the rapid annotation of medical terms within clinical notes. A user can highlight spans of

Sontag Lab 39 Nov 14, 2022
Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch

COCO LM Pretraining (wip) Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch. They were a

Phil Wang 44 Jul 28, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset.

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset. Through its Python API, the pretrained model can be fine-tuned on any protein-related task in

241 Jan 04, 2023
Sequence model architectures from scratch in PyTorch

This repository implements a variety of sequence model architectures from scratch in PyTorch. Effort has been put to make the code well structured so that it can serve as learning material. The train

Brando Koch 11 Mar 28, 2022
Code repository for "It's About Time: Analog clock Reading in the Wild"

it's about time Code repository for "It's About Time: Analog clock Reading in the Wild" Packages required: pytorch (used 1.9, any reasonable version s

52 Nov 10, 2022
Super easy library for BERT based NLP models

Fast-Bert New - Learning Rate Finder for Text Classification Training (borrowed with thanks from https://github.com/davidtvs/pytorch-lr-finder) Suppor

Utterworks 1.8k Dec 27, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
Fastseq 基于ONNXRUNTIME的文本生成加速框架

Fastseq 基于ONNXRUNTIME的文本生成加速框架

Jun Gao 9 Nov 09, 2021