Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Related tags

Text Data & NLPCLIF
Overview

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning

This repo is for Findings at EMNLP 2021 paper: Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning. Code clean-up is still in progress.

Data

Please extract the downloaded data and place it under PROJECT_DIR/datasets. Our training data stream and few-shot datasets are curated from https://github.com/iesl/leopard and https://github.com/INK-USC/CrossFit.

The directory structure is

PROJECT_DIR/datasets/crossfit_data/data/ + 55 classification tasks from the link above, e.g. PROJECT_DIR/datasets/crossfit_data/data/anli
PROJECT_DIR/datasets/leopard/ + 17 tasks from the link above, e.g. PROJECT_DIR/datasets/leopard/airline

Environment

Our code uses PyTorch 1.7.1. To allow fp16 training, you should also install apex.

Running Experiments

Training on CLIF-26

reg=0.01
lr=1e-4
seed=0
python run_model.py --tasks cola sst2 mrpc stsb qqp mnli qnli rte wnli \
--output_dir runs/glue_cfew_10k_choice_hnet_hardlong_sample_reg${reg}_s64_d256_limit/${lr}/${seed} \
--do_train --eval_period 100000 --eval_at_epoch_end  --wait_step 3 --num_train_epochs 100 --seed ${seed} \
--train_batch_size 64 --gradient_accumulation_steps 2 --learning_rate ${lr} --max_output_length 8 \
--generator_hdim 32 --example_limit 100 --train_limit 10000 --cl_method hnet --h_l2reg ${reg} \
--adapter_dim 256 --adapter_dim_final 64  --hard_long_term  --limit_label_vocab_space \
--sample_batch --scale_loss --stm_size 64

Few-shot evaluation on CLIF-26

python run_model.py --task_collection leopard --k_shot 16 --max_input_length 100  \
--output_dir /runs/glue_cfew_10k_choice_hnet_hardlong_sample_reg${reg}_s64_d256_limit/${lr}/${seed} \
--do_few_shot_predict --eval_period 100000 --eval_at_epoch_end  --wait_step 3 --num_train_epochs 100 \
--seed ${seed} --train_batch_size 64 --predict_batch_size 16 --few_shot_train_batch_size 16 \
--few_shot_wait_step 100000 --few_shot_num_train_epochs 800 --wait_step 3 --gradient_accumulation_steps 4 \
--scale_by_accumulation --learning_rate ${lr} --max_output_length 8  --generator_hdim 32 \
--example_limit 100 --train_limit 10000 --cl_method naive --h_l2reg ${reg} --adapter_dim 256 \
--adapter_dim_final 64 --hard_long_term --limit_label_vocab_space --no_short_term --long_term_task_emb_num 9 \
--postfix "naive_16shot"  --sample_batch --stm_size 64 --few_shot_eval_period 200

Training and evaluation on CLIF-55

reg=0.01
lr=1e-4
seed=0
python run_model.py  --task_collection crossfit_cls_train --crossfit_k_shot 16 --ssd --output_dir runs/crossfit_hnet_merge_space_${reg}/${lr}/${seed} --skip_intermediate_ckpt --add_space --merge_split --split_id ${seed} --seed ${seed} --do_train --eval_every_k_tasks 5 --eval_period 100 --skip_intermediate_ckpt --train_batch_size 64 --wait_step 3 --num_train_epochs 10000000  --learning_rate ${lr} --max_output_length 64 --example_limit 100 --train_limit 10000 --cl_method hnet --h_l2reg ${reg} --adapter_dim 256 --generator_hdim 32 --adapter_dim_final 64 --sample_batch --hard_long_term --stm_size 64
python run_model.py --task_collection crossfit_cls_train --crossfit_k_shot 16 --ssd --output_dir runs/crossfit_hnet_merge_space${reg}/${lr}/${seed} --skip_intermediate_ckpt --add_space --merge_split --split_id ${seed} --seed ${seed} --do_predict --eval_every_k_tasks 5 --eval_period 100 --skip_intermediate_ckpt --train_batch_size 64 --wait_step 3 --num_train_epochs 10000000  --learning_rate ${lr} --max_output_length 64 --example_limit 100 --train_limit 10000 --cl_method hnet --h_l2reg ${reg} --adapter_dim 256 --generator_hdim 32 --adapter_dim_final 64 --sample_batch --hard_long_term --stm_size 64
for split_id in 0 1 2 3 4
do
  python run_model.py --task_collection crossfit_cls_test --crossfit_k_shot 16 --ssd --postfix "split${split_id}"  --long_term_task_emb_num 45 --do_few_shot_predict --few_shot_eval_period 200 --few_shot_num_train_epochs 800 --few_shot_train_batch_size 64 --few_shot_wait_step 100 --mtl_task_num 45 --output_dir runs/crossfit_hnet_merge_space_${reg}/${lr}/${seed} --add_space  --limit_label_vocab_space --split_id ${split_id} --seed ${seed} --eval_period 100 --train_batch_size 64 --gradient_accumulation_steps 1 --wait_step 6 --num_train_epochs 10000  --learning_rate ${lr} --max_output_length 64 --example_limit 100 --train_limit 10000 --cl_method naive --adapter_dim 256 --generator_hdim 32 --adapter_dim_final 64 --sample_batch --hard_long_term
done

Here are mapping between command line arguments and implemented methods.

  • BART-Single without adapter: --cl_method naive --no_param_gen --skip_adapter --train_all
  • BART-Single-MTL: --cl_method naive --no_param_gen --skip_mtl --mtl --train_all
  • BiHNET-Vanilla: --cl_method naive --hard_long_term
  • BiHNET with trained task embeddings: --cl_method hnet --no_short_term --train_task_embs --hard_long_term
  • BART-Adapter-Single: --cl_method naive --no_param_gen --lr 3e-4
Owner
INK Lab @ USC
Intelligence and Knowledge Discovery (INK) Research Lab at University of Southern California
INK Lab @ USC
Tools, wrappers, etc... for data science with a concentration on text processing

Rosetta Tools for data science with a focus on text processing. Focuses on "medium data", i.e. data too big to fit into memory but too small to necess

207 Nov 22, 2022
CrossNER: Evaluating Cross-Domain Named Entity Recognition (AAAI-2021)

CrossNER is a fully-labeled collected of named entity recognition (NER) data spanning over five diverse domains (Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specia

Zihan Liu 89 Nov 10, 2022
Line as a Visual Sentence: Context-aware Line Descriptor for Visual Localization

Line as a Visual Sentence with LineTR This repository contains the inference code, pretrained model, and demo scripts of the following paper. It suppo

SungHo Yoon 158 Dec 27, 2022
Codes to pre-train Japanese T5 models

t5-japanese Codes to pre-train a T5 (Text-to-Text Transfer Transformer) model pre-trained on Japanese web texts. The model is available at https://hug

Megagon Labs 37 Dec 25, 2022
Trained T5 and T5-large model for creating keywords from text

text to keywords Trained T5-base and T5-large model for creating keywords from text. Supported languages: ru Pretraining Large version | Pretraining B

Danil 61 Nov 24, 2022
SimpleChinese2 集成了许多基本的中文NLP功能,使基于 Python 的中文文字处理和信息提取变得简单方便。

SimpleChinese2 SimpleChinese2 集成了许多基本的中文NLP功能,使基于 Python 的中文文字处理和信息提取变得简单方便。 声明 本项目是为方便个人工作所创建的,仅有部分代码原创。

Ming 30 Dec 02, 2022
ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python)

ttslearn: Library for Pythonで学ぶ音声合成 (Text-to-speech with Python) 日本語は以下に続きます (Japanese follows) English: This book is written in Japanese and primaril

Ryuichi Yamamoto 189 Dec 29, 2022
Python wrapper for Stanford CoreNLP tools v3.4.1

Python interface to Stanford Core NLP tools v3.4.1 This is a Python wrapper for Stanford University's NLP group's Java-based CoreNLP tools. It can eit

Dustin Smith 610 Sep 07, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 37 Jan 04, 2023
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 03, 2023
Repo for Enhanced Seq2Seq Autoencoder via Contrastive Learning for Abstractive Text Summarization

ESACL: Enhanced Seq2Seq Autoencoder via Contrastive Learning for AbstractiveText Summarization This repo is for our paper "Enhanced Seq2Seq Autoencode

Rachel Zheng 14 Nov 01, 2022
IMDB film review sentiment classification based on BERT's supervised learning model.

IMDB film review sentiment classification based on BERT's supervised learning model. On the other hand, the model can be extended to other natural language multi-classification tasks.

Paris 1 Apr 17, 2022
Mlcode - Continuous ML API Integrations

mlcode Basic APIs for ML applications. Django REST Application Contains REST API

Sujith S 1 Jan 01, 2022
nlp基础任务

NLP算法 说明 此算法仓库包括文本分类、序列标注、关系抽取、文本匹配、文本相似度匹配这五个主流NLP任务,涉及到22个相关的模型算法。 框架结构 文件结构 all_models ├── Base_line │   ├── __init__.py │   ├── base_data_process.

zuxinqi 23 Sep 22, 2022
Tools to download and cleanup Common Crawl data

cc_net Tools to download and clean Common Crawl as introduced in our paper CCNet. If you found these resources useful, please consider citing: @inproc

Meta Research 483 Jan 02, 2023
Hostapd-mac-tod-acl - Setup a hostapd AP with MAC ToD ACL

A brief explanation This script provides a quick way to setup a Time-of-day (Tod

2 Feb 03, 2022
Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Jifan Chen 22 Oct 21, 2022
UniSpeech - Large Scale Self-Supervised Learning for Speech

UniSpeech The family of UniSpeech: WavLM (arXiv): WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing UniSpeech (ICML 202

Microsoft 281 Dec 15, 2022
Smart discord chatbot integrated with Dialogflow

academic-NLP-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
✨Rubrix is a production-ready Python framework for exploring, annotating, and managing data in NLP projects.

✨A Python framework to explore, label, and monitor data for NLP projects

Recognai 1.5k Jan 02, 2023