Big Bird: Transformers for Longer Sequences

Overview

Big Bird: Transformers for Longer Sequences

Not an official Google product.

What is BigBird?

BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the capabilities of a complete transformer that the sparse model can handle.

As a consequence of the capability to handle longer context, BigBird drastically improves performance on various NLP tasks such as question answering and summarization.

More details and comparisons can be found in our presentation.

Citation

If you find this useful, please cite our NeurIPS 2020 paper:

@article{zaheer2020bigbird,
  title={Big bird: Transformers for longer sequences},
  author={Zaheer, Manzil and Guruganesh, Guru and Dubey, Kumar Avinava and Ainslie, Joshua and Alberti, Chris and Ontanon, Santiago and Pham, Philip and Ravula, Anirudh and Wang, Qifan and Yang, Li and others},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

Code

The most important directory is core. There are three main files in core.

  • attention.py: Contains BigBird linear attention mechanism
  • encoder.py: Contains the main long sequence encoder stack
  • modeling.py: Contains packaged BERT and seq2seq transformer models with BigBird attention

Colab/IPython Notebook

A quick fine-tuning demonstration for text classification is provided in imdb.ipynb

Create GCP Instance

Please create a project first and create an instance in a zone which has quota as follows

gcloud compute instances create \
  bigbird \
  --zone=europe-west4-a \
  --machine-type=n1-standard-16 \
  --boot-disk-size=50GB \
  --image-project=ml-images \
  --image-family=tf-2-3-1 \
  --maintenance-policy TERMINATE \
  --restart-on-failure \
  --scopes=cloud-platform

gcloud compute tpus create \
  bigbird \
  --zone=europe-west4-a \
  --accelerator-type=v3-32 \
  --version=2.3.1

gcloud compute ssh --zone "europe-west4-a" "bigbird"

For illustration we used instance name bigbird and zone europe-west4-a, but feel free to change them. More details about creating Google Cloud TPU can be found in online documentations.

Instalation and checkpoints

git clone https://github.com/google-research/bigbird.git
cd bigbird
pip3 install -e .

You can find pretrained and fine-tuned checkpoints in our Google Cloud Storage Bucket.

Optionally, you can download them using gsutil as

mkdir -p bigbird/ckpt
gsutil cp -r gs://bigbird-transformer/ bigbird/ckpt/

The storage bucket contains:

  • pretrained BERT model for base(bigbr_base) and large (bigbr_large) size. It correspond to BERT/RoBERTa-like encoder only models. Following original BERT and RoBERTa implementation they are transformers with post-normalization, i.e. layer norm is happening after the attention layer. However, following Rothe et al, we can use them partially in encoder-decoder fashion by coupling the encoder and decoder parameters, as illustrated in bigbird/summarization/roberta_base.sh launch script.
  • pretrained Pegasus Encoder-Decoder Transformer in large size(bigbp_large). Again following original implementation of Pegasus, they are transformers with pre-normalization. They have full set of separate encoder-decoder weights. Also for long document summarization datasets, we have converted Pegasus checkpoints (model.ckpt-0) for each dataset and also provided fine-tuned checkpoints (model.ckpt-300000) which works on longer documents.
  • fine-tuned tf.SavedModel for long document summarization which can be directly be used for prediction and evaluation as illustrated in the colab nootebook.

Running Classification

For quickly starting with BigBird, one can start by running the classification experiment code in classifier directory. To run the code simply execute

export GCP_PROJECT_NAME=bigbird-project  # Replace by your project name
export GCP_EXP_BUCKET=gs://bigbird-transformer-training/  # Replace
sh -x bigbird/classifier/base_size.sh

Using BigBird Encoder instead BERT/RoBERTa

To directly use the encoder instead of say BERT model, we can use the following code.

from bigbird.core import modeling

bigb_encoder = modeling.BertModel(...)

It can easily replace BERT's encoder.

Alternatively, one can also try playing with layers of BigBird encoder

from bigbird.core import encoder

only_layers = encoder.EncoderStack(...)

Understanding Flags & Config

All the flags and config are explained in core/flags.py. Here we explain some of the important config paramaters.

attention_type is used to select the type of attention we would use. Setting it to block_sparse runs the BigBird attention module.

flags.DEFINE_enum(
    "attention_type", "block_sparse",
    ["original_full", "simulated_sparse", "block_sparse"],
    "Selecting attention implementation. "
    "'original_full': full attention from original bert. "
    "'simulated_sparse': simulated sparse attention. "
    "'block_sparse': blocked implementation of sparse attention.")

block_size is used to define the size of blocks, whereas num_rand_blocks is used to set the number of random blocks. The code currently uses window size of 3 blocks and 2 global blocks. The current code only supports static tensors.

Important points to note:

  • Hidden dimension should be divisible by the number of heads.
  • Currently the code only handles tensors of static shape as it is primarily designed for TPUs which only works with statically shaped tensors.
  • For sequene length less than 1024, using original_full is advised as there is no benefit in using sparse BigBird attention.
skweak: A software toolkit for weak supervision applied to NLP tasks

Labelled data remains a scarce resource in many practical NLP scenarios. This is especially the case when working with resource-poor languages (or text domains), or when using task-specific labels wi

Norsk Regnesentral (Norwegian Computing Center) 850 Dec 28, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
Parrot is a paraphrase based utterance augmentation framework purpose built to accelerate training NLU models

Parrot is a paraphrase based utterance augmentation framework purpose built to accelerate training NLU models. A paraphrase framework is more than just a paraphrasing model.

Prithivida 681 Jan 01, 2023
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
PUA Programming Language written in Python.

pua-lang PUA Programming Language written in Python. Installation git clone https://github.com/zhaoyang97/pua-lang.git cd pua-lang pip install . Try

zy 4 Feb 19, 2022
Code for the paper "Are Sixteen Heads Really Better than One?"

Are Sixteen Heads Really Better than One? This repository contains code to reproduce the experiments in our paper Are Sixteen Heads Really Better than

Paul Michel 143 Dec 14, 2022
PORORO: Platform Of neuRal mOdels for natuRal language prOcessing

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing pororo performs Natural Language Processing and Speech-related tasks. It is easy to

Kakao Brain 1.2k Dec 21, 2022
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
Lattice methods in TensorFlow

TensorFlow Lattice TensorFlow Lattice is a library that implements constrained and interpretable lattice based models. It is an implementation of Mono

504 Dec 20, 2022
profile tools for pytorch nn models

nnprof Introduction nnprof is a profile tool for pytorch neural networks. Features multi profile mode: nnprof support 4 profile mode: Layer level, Ope

Feng Wang 42 Jul 09, 2022
Get list of common stop words in various languages in Python

Python Stop Words Table of contents Overview Available languages Installation Basic usage Python compatibility Overview Get list of common stop words

Alireza Savand 142 Dec 21, 2022
Sentello is python script that simulates the anti-evasion and anti-analysis techniques used by malware.

sentello Sentello is a python script that simulates the anti-evasion and anti-analysis techniques used by malware. For techniques that are difficult t

Malwation 62 Oct 02, 2022
Poetry PEP 517 Build Backend & Core Utilities

Poetry Core A PEP 517 build backend implementation developed for Poetry. This project is intended to be a light weight, fully compliant, self-containe

Poetry 293 Jan 02, 2023
A natural language processing model for sequential sentence classification in medical abstracts.

NLP PubMed Medical Research Paper Abstract (Randomized Controlled Trial) A natural language processing model for sequential sentence classification in

Hemanth Chandran 1 Jan 17, 2022
RIDE automatically creates the package and boilerplate OOP Python node scripts as per your needs

RIDE: ROS IDE RIDE automatically creates the package and boilerplate OOP Python code for nodes as per your needs (RIDE is not an IDE, but even ROS isn

Jash Mota 20 Jul 14, 2022
NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

pretrain4ir_tutorial NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking 用作NLPIR实验室, Pre-training

ZYMa 12 Apr 07, 2022
A python package for deep multilingual punctuation prediction.

This python library predicts the punctuation of English, Italian, French and German texts. We developed it to restore the punctuation of transcribed spoken language.

Oliver Guhr 27 Dec 22, 2022
Blackstone is a spaCy model and library for processing long-form, unstructured legal text

Blackstone Blackstone is a spaCy model and library for processing long-form, unstructured legal text. Blackstone is an experimental research project f

ICLR&D 579 Jan 08, 2023
Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 models for speech recognition

Wav2Vec2 STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 mode

David Zurow 22 Dec 29, 2022
HAN2HAN : Hangul Font Generation

HAN2HAN : Hangul Font Generation

Changwoo Lee 36 Dec 28, 2022