Training code of Spatial Time Memory Network. Semi-supervised video object segmentation.

Overview

Training-code-of-STM

This repository fully reproduces Space-Time Memory Networks image

Performance on Davis17 val set&Weights

backbone training stage training dataset J&F J F weights
Ours resnet-50 stage 1 MS-COCO 69.5 67.8 71.2 link
Origin resnet-50 stage 2 MS-COCO -> Davis&Youtube-vos 81.8 79.2 84.3 link
Ours resnet-50 stage 2 MS-COCO -> Davis&Youtube-vos 82.0 79.7 84.4 link
Ours resnest-101 stage 2 MS-COCO -> Davis&Youtube-vos 84.6 82.0 87.2 link

Requirements

  • Python >= 3.6
  • Pytorch 1.5
  • Numpy
  • Pillow
  • opencv-python
  • imgaug
  • scipy
  • tqdm
  • pandas
  • resnest

Datasets

MS-COCO

We use MS-COCO's instance segmentation part to generate pseudo video sequence. Specifically, we cut out the objects in one image and paste them on another one. Then we perform different affine transformations on the foreground objects and the background image. If you want to visualize some of the processed training frame sequence:

python dataset/coco.py -Ddavis "path to davis" -Dcoco "path to coco" -o "path to output dir"

image image

DAVIS

Youtube-VOS

Structure

 |- data
      |- Davis
          |- JPEGImages
          |- Annotations
          |- ImageSets
      
      |- Youtube-vos
          |- train
          |- valid
          
      |- Ms-COCO
          |- train2017
          |- annotations
              |- instances_train2017.json

Demo

python demo.py -g "gpu id" -s "set" -y "year" -D "path to davis" -p "path to weights" -backbone "[resnet50,resnet18,resnest101]"
#e.g.
python demo.py -g 0 -s val -y 17 -D ../data/Davis/ -p /smart/haochen/cvpr/0628_resnest_aspp/davis_youtube_resnest101_699999.pth -backbone resnest101
bmx-trees.mp4

Training

Stage 1

Pretraining on MS-COCO.

python train_coco.py -Ddavis "path to davis" -Dcoco "path to coco" -backbone "[resnet50,resnet18]" -save "path to checkpoints"
#e.g.
python train_coco.py -Ddavis ../data/Davis/ -Dcoco ../data/Ms-COCO/ -backbone resnet50 -save ../coco_weights/

Stage 2

Training on Davis&Youtube-vos.

python train_davis.py -Ddavis "path to davis" -Dyoutube "path to youtube-vos" -backbone "[resnet50,resnet18]" -save "path to checkpoints" -resume "path to coco pretrained weights"
#e.g. 
train_davis.py -Ddavis ../data/Davis/ -Dyoutube ../data/Youtube-vos/ -backbone resnet50 -save ../davis_weights/ -resume ../coco_weights/coco_pretrained_resnet50_679999.pth

Evaluation

Evaluating on Davis 2017&2016 val set.

python eval.py -g "gpu id" -s "set" -y "year" -D "path to davis" -p "path to weights" -backbone "[resnet50,resnet18,resnest101]"
#e.g.
python eval.py -g 0 -s val -y 17 -D ../data/davis -p ../davis_weights/davis_youtube_resnet50_799999.pth -backbone resnet50
python eval.py -g 0 -s val -y 17 -D ../data/davis -p ../davis_weights/davis_youtube_resnest101_699999.pth -backbone resnest101

Notes

  • STM is an attention-based implicit matching architecture, which needs large amounts of data for training. The first stage of training is necessary if you want to get better results.
  • Training takes about three days on a single NVIDIA 2080Ti. There is no log during training, you could add logs if you need.
  • Due to time constraints, the code is a bit messy and need to be optimized. Questions and suggestions are welcome.

Acknowledgement

This codebase borrows the code and structure from official STM repository

Citing STM

@inproceedings{oh2019video,
  title={Video object segmentation using space-time memory networks},
  author={Oh, Seoung Wug and Lee, Joon-Young and Xu, Ning and Kim, Seon Joo},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={9226--9235},
  year={2019}
}
Owner
haochen wang
haochen wang
Twitter Sentiment Analysis using #tag, words and username

Twitter Sentment Analysis Web App using #tag, words and username to fetch data finds Insides of data and Tells Sentiment of the perticular #tag, words or username.

Kumar Saksham 26 Dec 25, 2022
Google AI 2018 BERT pytorch implementation

BERT-pytorch Pytorch implementation of Google AI's 2018 BERT, with simple annotation BERT 2018 BERT: Pre-training of Deep Bidirectional Transformers f

Junseong Kim 5.3k Jan 07, 2023
Searching keywords in PDF file folders

keyword_searching Steps to use this Python scripts: (1)Paste this script into the file folder containing the PDF files you need to search from; (2)Thi

1 Nov 08, 2021
Py65 65816 - Add support for the 65C816 to py65

Add support for the 65C816 to py65 Py65 (https://github.com/mnaberez/py65) is a

4 Jan 04, 2023
Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Hans Alemão 4 Jul 20, 2022
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS implementation in Python Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS

Hamed Baziyad 8 Dec 10, 2022
Fixes mojibake and other glitches in Unicode text, after the fact.

ftfy: fixes text for you print(fix_encoding("(ง'⌣')ง")) (ง'⌣')ง Full documentation: https://ftfy.readthedocs.org Testimonials “My life is li

Luminoso Technologies, Inc. 3.4k Dec 29, 2022
Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings

Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings Trong bài viết này mình sẽ sử dụng pretrain model SimCS

Vo Van Phuc 18 Nov 25, 2022
Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Yu Zhang 50 Nov 08, 2022
Extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

Housegan-data-reader House-GAN++ (data-reader) Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN

Sepid Hosseini 13 Nov 24, 2022
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

Max Woolf 4.8k Dec 30, 2022
A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex)

CodeJ A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex) Install requirements pip install -r

TheProtagonist 1 Dec 06, 2021
TruthfulQA: Measuring How Models Imitate Human Falsehoods

TruthfulQA: Measuring How Models Imitate Human Falsehoods

69 Dec 25, 2022
DLO8012: Natural Language Processing & CSL804: Computational Lab - II

NATURAL-LANGUAGE-PROCESSING-AND-COMPUTATIONAL-LAB-II DLO8012: NLP & CSL804: CL-II [SEMESTER VIII] Syllabus NLP - Reference Books THE WALL MEGA SATISH

AMEY THAKUR 7 Apr 28, 2022
null

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022
Prompt tuning toolkit for GPT-2 and GPT-Neo

mkultra mkultra is a prompt tuning toolkit for GPT-2 and GPT-Neo. Prompt tuning injects a string of 20-100 special tokens into the context in order to

61 Jan 01, 2023
Correctly generate plurals, ordinals, indefinite articles; convert numbers to words

NAME inflect.py - Correctly generate plurals, singular nouns, ordinals, indefinite articles; convert numbers to words. SYNOPSIS import inflect p = in

Jason R. Coombs 762 Dec 29, 2022
Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration This is the official repository for the EMNLP 2021 long pa

70 Dec 11, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
I can help you convert your images to pdf file.

IMAGE TO PDF CONVERTER BOT Configs TOKEN - Get bot token from @BotFather API_ID - From my.telegram.org API_HASH - From my.telegram.org Deploy to Herok

MADUSHANKA 10 Dec 14, 2022