Open-World Entity Segmentation

Related tags

Text Data & NLPEntity
Overview

Open-World Entity Segmentation Project Website

Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia


This project provides an implementation for the paper "Open-World Entity Segmentation" based on Detectron2. Entity Segmentation is a segmentation task with the aim to segment everything in an image into semantically-meaningful regions without considering any category labels. Our entity segmentation models can perform exceptionally well in a cross-dataset setting where we use only COCO as the training dataset but we test the model on images from other datasets at inference time. Please refer to project website for more details and visualizations.


Installation

This project is based on Detectron2, which can be constructed as follows.

  • Install Detectron2 following the instructions. We are noting that our code is implemented in detectron2 commit version 28174e932c534f841195f02184dc67b941c65a67 and pytorch 1.8.
  • Setup the coco dataset including instance and panoptic annotations following the structure. The code of entity evaluation metric is saved in the file of modified_cocoapi. You can directly replace your compiled coco.py with modified_cocoapi/PythonAPI/pycocotools/coco.py.
  • Copy this project to /path/to/detectron2/projects/EntitySeg
  • Set the "find_unused_parameters=True" in distributed training of your own detectron2. You could modify it in detectron2/engine/defaults.py.

Data pre-processing

(1) Generate the entity information of each image by the instance and panoptic annotation. Please change the path of coco annotation files in the following code.

cd /path/to/detectron2/projects/EntitySeg/make_data
bash make_entity_mask.sh

(2) Change the generated entity information to the json files.

cd /path/to/detectron2/projects/EntitySeg/make_data
python3 entity_to_json.py

Training

To train model with 8 GPUs, run:

cd /path/to/detectron2
python3 projects/EntitySeg/train_net.py --config-file <projects/EntitySeg/configs/config.yaml> --num-gpus 8

For example, to launch entity segmentation training (1x schedule) with ResNet-50 backbone on 8 GPUs and save the model in the path "/data/entity_model". one should execute:

cd /path/to/detectron2
python3 projects/EntitySeg/train_net.py --config-file projects/EntitySeg/configs/entity_default.yaml --num-gpus 8 OUTPUT_DIR /data/entity_model

Evaluation

To evaluate a pre-trained model with 8 GPUs, run:

cd /path/to/detectron2
python3 projects/EntitySeg/train_net.py --config-file <config.yaml> --num-gpus 8 --eval-only MODEL.WEIGHTS model_checkpoint

Visualization

To visualize some image result of a pre-trained model, run:

cd /path/to/detectron2
python3 projects/EntitySeg/demo_result_and_vis.py --config-file <config.yaml> --input <input_path> --output <output_path> MODEL.WEIGHTS model_checkpoint MODEL.CONDINST.MASK_BRANCH.USE_MASK_RESCORE "True"

For example,

python3 projects/EntitySeg/demo_result_and_vis.py --config-file projects/EntitySeg/configs/entity_swin_lw7_1x.yaml --input /data/input/*.jpg --output /data/output MODEL.WEIGHTS /data/pretrained_model/R_50.pth MODEL.CONDINST.MASK_BRANCH.USE_MASK_RESCORE "True"

Pretrained weights of Swin Transformers

Use the tools/convert_swin_to_d2.py to convert the pretrained weights of Swin Transformers to the detectron2 format. For example,

pip install timm
wget https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth
python tools/convert_swin_to_d2.py swin_tiny_patch4_window7_224.pth swin_tiny_patch4_window7_224_trans.pth

Pretrained weights of Segformer Backbone

Use the tools/convert_mit_to_d2.py to convert the pretrained weights of SegFormer Backbone to the detectron2 format. For example,

pip install timm
python tools/convert_mit_to_d2.py mit_b0.pth mit_b0_trans.pth

Results

We provide the results of several pretrained models on COCO val set. It is easy to extend it to other backbones. We first describe the results of using CNN backbone.

Method Backbone Sched Entity AP download
Baseline R50 1x 28.3 model | metrics
Ours R50 1x 29.8 model | metrics
Ours R50 3x 31.8 model | metrics
Ours R101 1x 31.0 model | metrics
Ours R101 3x 33.2 model | metrics
Ours R101-DCNv2 3x 35.5 model | metrics

The results of using transformer backbone as follows.The Mask Rescore indicates that we use mask rescoring in inference by setting MODEL.CONDINST.MASK_BRANCH.USE_MASK_RESCORE to True.

Method Backbone Sched Entity AP Mask Rescore download
Ours Swin-T 1x 33.0 34.6 model | metrics
Ours Swin-L-W7 1x 37.8 39.3 model | metrics
Ours Swin-L-W7 3x 38.6 40.0 model | metrics
Ours Swin-L-W12 3x TBD TBD model | metrics
Ours MiT-b0 1x 28.8 30.4 model | metrics
Ours MiT-b2 1x 35.1 36.6 model | metrics
Ours MiT-b3 1x 36.9 38.5 model | metrics
Ours MiT-b5 1x 37.2 38.7 model | metrics
Ours MiT-b5 3x TBD TBD model | metrics

Citing Ours

Consider to cite Open-World Entity Segmentation if it helps your research.

@inprocedings{qi2021open,
  title={Open World Entity Segmentation},
  author={Lu Qi, Jason Kuen, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia},
  booktitle={arxiv},
  year={2021}
}
Owner
DV Lab
Deep Vision Lab
DV Lab
CoNLL-English NER Task (NER in English)

CoNLL-English NER Task en | ch Motivation Course Project review the pytorch framework and sequence-labeling task practice using the transformers of Hu

Kevin 2 Jan 14, 2022
Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Ubiquitous Knowledge Processing Lab 748 Jan 06, 2023
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 169 Jan 05, 2023
Examples of using sparse attention, as in "Generating Long Sequences with Sparse Transformers"

Status: Archive (code is provided as-is, no updates expected) Update August 2020: For an example repository that achieves state-of-the-art modeling pe

OpenAI 1.3k Dec 28, 2022
Pattern Matching in Python

Pattern Matching finalmente chega no Python 3.10. E daí? "Pattern matching", ou "correspondência de padrões" como é conhecido no Brasil. Algumas pesso

Fabricio Werneck 6 Feb 16, 2022
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
Just a Basic like Language for Zeno INC

zeno-basic-language Just a Basic like Language for Zeno INC This is written in 100% python. this is basic language like language. so its not for big p

Voidy Devleoper 1 Dec 18, 2021
Revisiting Pre-trained Models for Chinese Natural Language Processing (Findings of EMNLP 2020)

This repository contains the resources in our paper "Revisiting Pre-trained Models for Chinese Natural Language Processing", which will be published i

Yiming Cui 463 Dec 30, 2022
A method for cleaning and classifying text using transformers.

NLP Translation and Classification The repository contains a method for classifying and cleaning text using NLP transformers. Overview The input data

Ray Chamidullin 0 Nov 15, 2022
The guide to tackle with the Text Summarization

The guide to tackle with the Text Summarization

Takahiro Kubo 1.2k Dec 30, 2022
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Dec 26, 2022
Persian-lexicon - A lexicon of 70K unique Persian (Farsi) words

Persian Lexicon This repo uses Uppsala Persian Corpus (UPC) to construct a lexic

Saman Vaisipour 7 Apr 01, 2022
Textpipe: clean and extract metadata from text

textpipe: clean and extract metadata from text textpipe is a Python package for converting raw text in to clean, readable text and extracting metadata

Textpipe 298 Nov 21, 2022
A Streamlit web app that generates Rick and Morty stories using GPT2.

Rick and Morty Story Generator This project uses a pre-trained GPT2 model, which was fine-tuned on Rick and Morty transcripts, to generate new stories

₸ornike 33 Oct 13, 2022
DeepSpeech - Easy-to-use Speech Toolkit including SOTA ASR pipeline, influential TTS with text frontend and End-to-End Speech Simultaneous Translation.

(简体中文|English) Quick Start | Documents | Models List PaddleSpeech is an open-source toolkit on PaddlePaddle platform for a variety of critical tasks i

5.6k Jan 03, 2023
Fast, DB Backed pretrained word embeddings for natural language processing.

Embeddings Embeddings is a python package that provides pretrained word embeddings for natural language processing and machine learning. Instead of lo

Victor Zhong 212 Nov 21, 2022
ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Description: ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39

GOKHAN OZSARI 5 Dec 16, 2022
Winner system (DAMO-NLP) of SemEval 2022 MultiCoNER shared task over 10 out of 13 tracks.

KB-NER: a Knowledge-based System for Multilingual Complex Named Entity Recognition The code is for the winner system (DAMO-NLP) of SemEval 2022 MultiC

116 Dec 27, 2022
VampiresVsWerewolves - Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition

VampiresVsWerewolves Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition. Our Algorithm finish

Shawn 1 Jan 21, 2022
A simple implementation of N-gram language model.

About A simple implementation of N-gram language model. Requirements numpy Data preparation Corpus Training data for the N-gram model, a text file lik

4 Nov 24, 2021