A desktop GUI providing an audio interface for GPT3.

Overview

Jabberwocky

neil_degrasse_tyson_with_audio.mp4

Project Description

This GUI provides an audio interface to GPT-3. My main goal was to provide a convenient way to interact with various experts or public figures: imagine discussing physics with Einstein or hip hop with Kanye (or hip hop with Einstein? 🤔 ). I often find writing and speaking to be wildly different experiences and I imagined the same would be true when interacting with GPT-3. This turned out to be partially true - the default Mac text-to-speech functionality I'm using here is certainly not as lifelike as I'd like. Perhaps more powerful audio generation methods will pop up in a future release...

We also provide Task Mode containing built-in prompts for a number of sample tasks:

  • Summarization
  • Explain like I'm 5
  • Translation
  • How To (step by step instructions for performing everyday tasks)
  • Writing Style Analysis
  • Explain machine learning concepts in simple language
  • Generate ML paper abstracts
  • MMA Fight Analysis and Prediction

Getting Started

  1. Clone the repo.
git clone https://github.com/hdmamin/jabberwocky.git
  1. Install the necessary packages. I recommend using a virtual environment of some kind (virtualenv, conda, etc). If you're not using Mac OS, you could try installing portaudio with whatever package manager you're using, but app behavior on other systems is unknown.
brew install portaudio
pip install -r requirements.txt
python -m nltk.downloader punkt

If you have make installed you can simply use the command:

make install
  1. Add your openai API key somewhere the program can access it. There are two ways to do this:
echo your_openai_api_key > ~/.openai

or

export OPENAI_API_KEY=your_openai_api_key

(Make sure to use your actual key, not the literal text your_openai_api_key.)

  1. Run the app.
python gui/main.py

Or with make:

make run

Usage

Conversation Mode

In conversation mode, you can chat with a number of pre-defined personas or add new ones. New personas can be autogenerated or defined manually.

See data/conversation_personas for examples of autogenerated prompts. You can likely achieve better results using custom prompts though.

Conversation mode only supports spoken input, though you can edit flawed transcriptions manually. Querying GPT-3 with nonsensical or ungrammatical text will negatively affect response quality.

Task Mode

In task mode, you can ask GPT-3 to perform a number pre-defined tasks. Written and spoken input are both supported. By default, GPT-3's response is both typed out and read aloud.

Transcripts of responses from a small subset of non-conversation tasks can be found in the data/completions directory. You can also save your own completions while using the app.

Usage Notes

The first time you speak, the speech transcription back end will take a few seconds to calibrate to the level of ambient noise in your environment. You will know it's ready for transcription when you see a "Listening..." message appear below the Record button. Calibration only occurs once to save time.

Hotkeys

CTRL + SHIFT: Start recording audio (same as pressing the "Record" button).
CTRL + a: Get GPT-3's response to whatever input you've recorded (same as pressing the "Get Response" button).

Project Members

  • Harrison Mamin

Repo Structure

jabberwocky/
├── data         # Raw and processed data. Some files are excluded from github but the ones needed to run the app are there.
├── notes        # Miscellaneous notes from the development process stored as raw text files.
├── notebooks    # Jupyter notebooks for experimentation and exploratory analysis.
├── reports      # Markdown reports (performance reports, blog posts, etc.)
├── gui          # GUI scripts. The main script should be run from the project root directory. 
└── lib          # Python package. Code can be imported in analysis notebooks, py scripts, etc.

The docker and setup dirs contain remnants from previous attempts to package the app. While I ultimately decided to go with a simpler approach, I left them in the repo so I have the option of picking up where I left off if I decide to work on a new version.

Owner
Data Scientist
A number of methods in order to perform Natural Language Processing on live data derived from Twitter

A number of methods in order to perform Natural Language Processing on live data derived from Twitter

1 Nov 24, 2021
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 03, 2023
Chinese real time voice cloning (VC) and Chinese text to speech (TTS).

Chinese real time voice cloning (VC) and Chinese text to speech (TTS). 好用的中文语音克隆兼中文语音合成系统,包含语音编码器、语音合成器、声码器和可视化模块。

Kuang Dada 6 Nov 08, 2022
Generating Korean Slogans with phonetic and structural repetition

LexPOS_ko Generating Korean Slogans with phonetic and structural repetition Generating Slogans with Linguistic Features LexPOS is a sequence-to-sequen

Yeoun Yi 3 May 23, 2022
Russian words synonyms and antonyms

ru_synonyms Russian words synonyms and antonyms. Install pip install git+https://github.com/ahmados/rusynonyms.git Usage from ru_synonyms import Anto

sumekenov 7 Dec 14, 2022
Top2Vec is an algorithm for topic modeling and semantic search.

Top2Vec is an algorithm for topic modeling and semantic search. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors.

Dimo Angelov 2.4k Jan 06, 2023
Bu Chatbot, Konya Bilim Merkezi Yen için tasarlanmış olan bir projedir.

chatbot Bu Chatbot, Konya Bilim Merkezi Yeni Ufuklar Sergisi için 2021 Yılında tasarlanmış olan bir projedir. Chatbot Python ortamında yazılmıştır. Sö

Emre Özkul 1 Feb 23, 2022
Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline

Twitter-News-Summarizer Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline 1.) Extracts all tweets fr

Rohit Govindan 1 Jan 27, 2022
This simple Python program calculates a love score based on your and your crush's full names in English

This simple Python program calculates a love score based on your and your crush's full names in English. There is no logic or reason in the calculation behind the love score. The calculation could ha

p.katekomol 1 Jan 24, 2022
A tool helps build a talk preview image by combining the given background image and talk event description

talk-preview-img-builder A tool helps build a talk preview image by combining the given background image and talk event description Installation and U

PyCon Taiwan 4 Aug 20, 2022
The official implementation of "BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?, ACL 2021 main conference"

BERT is to NLP what AlexNet is to CV This is the official implementation of BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Iden

Asahi Ushio 20 Nov 03, 2022
AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

凌逆战 75 Dec 05, 2022
ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

Antlr Project 13.6k Jan 05, 2023
Code associated with the "Data Augmentation using Pre-trained Transformer Models" paper

Data Augmentation using Pre-trained Transformer Models Code associated with the Data Augmentation using Pre-trained Transformer Models paper Code cont

44 Dec 31, 2022
Pytorch-Named-Entity-Recognition-with-BERT

BERT NER Use google BERT to do CoNLL-2003 NER ! Train model using Python and Inference using C++ ALBERT-TF2.0 BERT-NER-TENSORFLOW-2.0 BERT-SQuAD Requi

Kamal Raj 1.1k Dec 25, 2022
In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a model using HugginFace transformers framework.

Transformers are all you need In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a

Aymen Berriche 8 Apr 13, 2022
A fast, efficient universal vector embedding utility package.

Magnitude: a fast, simple vector embedding utility library A feature-packed Python package and vector storage file format for utilizing vector embeddi

Plasticity 1.5k Jan 02, 2023
Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"

T5: Text-To-Text Transfer Transformer The t5 library serves primarily as code for reproducing the experiments in Exploring the Limits of Transfer Lear

Google Research 4.6k Jan 01, 2023
A 10000+ hours dataset for Chinese speech recognition

A 10000+ hours dataset for Chinese speech recognition

309 Dec 16, 2022