Toy example of an applied ML pipeline for me to experiment with MLOps tools.

Overview

Toy Machine Learning Pipeline

Table of Contents
  1. About
  2. Getting Started
  3. ML task description and evaluation procedure
  4. Dataset description
  5. Repository structure
  6. Utils documentation
  7. Roadmap
  8. Contributing
  9. Contact

About

This is a toy example of a standalone ML pipeline written entirely in Python. No external tools are incorporated into the master branch. I built this for two reasons:

  1. To experiment with my own ideas for MLOps tools, as it is hard to develop devtools in a vacuum :)
  2. To have something to integrate existing MLOps tools with so I can have real opinions

The following diagram describes the pipeline at a high level. The README describes it in more detail.

Diagram

Getting started

This pipeline is broken down into several components, described in a high level by the directories in this repository. See the Makefile for various commands you can run, but to serve the inference API locally, you can do the following:

  1. git clone the repository
  2. In the root directory of the repo, run make serve
  3. [OPTIONAL] In a new tab, run make inference to ping the API with some sample records

All Python dependencies and virtual environment creation is handled by the Makefile. See setup.py to see the packages installed into the virtual environment, which mainly consist of basic Python packages such as pandas or sklearn.

ML task description and evaluation procedure

We train a model to predict whether a passenger in a NYC taxicab ride will give the driver a large tip. This is a binary classification task. A large tip is arbitrarily defined as greater than 20% of the total fare (before tip). To evaluate the model or measure the efficacy of the model, we measure the F1 score.

The current best model is an instance of sklearn.ensemble.RandomForestClassifier with max_depth of 10 and other default parameters. The test set F1 score is 0.716. I explored this toy task earlier in my debugging ML talk.

Dataset description

We use the yellow taxicab trip records from the NYC Taxi & Limousine Comission public dataset, which is stored in a public aws S3 bucket. The data dictionary can be found here and is also shown below:

Field Name Description
VendorID A code indicating the TPEP provider that provided the record. 1= Creative Mobile Technologies, LLC; 2= VeriFone Inc.
tpep_pickup_datetime The date and time when the meter was engaged.
tpep_dropoff_datetime The date and time when the meter was disengaged.
Passenger_count The number of passengers in the vehicle. This is a driver-entered value.
Trip_distance The elapsed trip distance in miles reported by the taximeter.
PULocationID TLC Taxi Zone in which the taximeter was engaged.
DOLocationID TLC Taxi Zone in which the taximeter was disengaged
RateCodeID The final rate code in effect at the end of the trip. 1= Standard rate, 2=JFK, 3=Newark, 4=Nassau or Westchester, 5=Negotiated fare, 6=Group ride
Store_and_fwd_flag This flag indicates whether the trip record was held in vehicle memory before sending to the vendor, aka “store and forward,” because the vehicle did not have a connection to the server. Y= store and forward trip, N= not a store and forward trip
Payment_type A numeric code signifying how the passenger paid for the trip. 1= Credit card, 2= Cash, 3= No charge, 4= Dispute, 5= Unknown, 6= Voided trip
Fare_amount The time-and-distance fare calculated by the meter.
Extra Miscellaneous extras and surcharges. Currently, this only includes the $0.50 and $1 rush hour and overnight charges.
MTA_tax $0.50 MTA tax that is automatically triggered based on the metered rate in use.
Improvement_surcharge $0.30 improvement surcharge assessed trips at the flag drop. The improvement surcharge began being levied in 2015.
Tip_amount Tip amount – This field is automatically populated for credit card tips. Cash tips are not included.
Tolls_amount Total amount of all tolls paid in trip.
Total_amount The total amount charged to passengers. Does not include cash tips.

Repository structure

The pipeline contains multiple components, each organized into the following high-level subdirectories:

  • etl
  • training
  • inference

Pipeline components

Any applied ML pipeline is essentially a series of functions applied one after the other, such as data transformations, models, and output transformations. This pipeline was initially built in a lightweight fashion to run on a regular laptop with around 8 GB of RAM. The logic in these components is a first pass; there is a lot of room to improve.

The following table describes the components of this pipeline, in order:

Name Description How to run File(s)
Cleaning Reads the dataset (stored in a public S3 bucket) and performs very basic cleaning (drops rows outside the time range or with $0-valued fares) make cleaning etl/cleaning.py
Featuregen Generates basic features for the ML model make featuregen etl/featuregen.py
Split Splits the features into train and test sets make split training/split.py
Training Trains a random forest classifier on the train set and evaluates it on the test set make training training/train.py
Inference Locally serves an API that is essentially a wrapper around the predict function make serve, make inference [inference/app.py, inference/inference.py]

Data storage

The inputs and outputs for the pipeline components, as well as other artifacts, are stored in a public S3 bucket named toy-applied-ml-pipeline located in us-west-1. Read access is universal and doesn't require special permissions. Write access is limited to those with credentials. If you are interested in contributing and want write access, please contact me directly describing how you would like to be involved, and I can send you keys.

The bucket has a scratch folder, where random scratch files live. These random scratch files were likely generated by the write_file function in utils.io. The bulk of the bucket lies in the dev directory, or s3://toy-applied-ml-pipeline/dev.

The dev directory's subdirectories represent the components in the pipeline. These subdirectories contain the outputs of each component respectively, where the outputs are versioned with the timestamp the component was run. The utils.io library contains helper functions to write outputs and load the latest component output as input to another component. To inspect the filesystem structure further, you can call io.list_files(dirname), which returns the immediate files in dirname.

If you have write permissions, store your keys/ids in an .env file, and the Makefile will automatically pick it up. If you do not have write permissions, you will run into an error if you try to write to the S3 bucket.

Utils documentation

The utils directory contains helper functions and abstractions for expanding upon the current pipeline. Tests are in utils/tests.py. Note that only the io functions are tested as of now.

io

utils/io.py contains various helper functions to interface with S3. The two most useful functions are:

def load_output_df(component: str, dev: bool = True, version: str = None) -> pd.DataFrame:
  """
    This function loads the latest version of data that was produced by a component.
    Args:
        component (str): component name that we want to get the output from
        dev (bool): whether this is run in development or "production" mode
        version (str, optional): specified version of the data
    Returns:
        df (pd.DataFrame): dataframe corresponding to the data in the latest version of the output for the specified component
    """
    ...

def save_output_df(df: pd.DataFrame, component: str, dev: bool = True, overwrite: bool = False, version: str = None) -> str:
    """
    This function writes the output of a pipeline component (a dataframe) to a parquet file.
    Args:
        df (pd.DataFrame): dataframe representing the output
        component (str): name of the component that produced the output (ex: clean)
        dev (bool, optional): whether this is run in development or "production" mode
        overwrite (bool, optional): whether to overwrite a file with the same name
        version (str, optional): optional version for the output. If not specified, the function will create the version number.
    Returns:
        path (str): Full path that the file can be accessed at
    """
    ...

Note that save_output_df's default parameters are set such that you cannot overwrite an existing file. You can change this by setting overwrite = True.

Feature generators

utils.feature_generators.py contains the lightweight abstraction for a feature generator to make it easy for someone to create a new feature. The abstraction is as follows:

class FeatureGenerator(ABC):
    """Abstract class for a feature generator."""

    def __init__(self, name: str, required_columns: typing.List[str]):
        """Constructor stores the name of the feature and columns required in a df to construct that feature."""
        self.name = name
        self.required_columns = required_columns

    @abstractmethod
    def compute(self):
        pass

    @abstractmethod
    def schema(self):
        pass

See utils.feature_generators.py for examples on how to create specific feature types and etl/featuregen.py for an example on how to create the actual instances of the features themselves.

Models

utils/models.py contains the ModelWrapper abstraction. This abstraction is essentially a wrapper around a model and consists of:

  • the model binary
  • pointer to dataset(s)
  • metric values

To use this abstraction, you must create a subclass of ModelWrapper and implement the preprocess, train, predict, and score methods. The base class also provides methods to save and load the ModelWrapper object. It will fail to save if the client has not added data paths and metrics to the object.

An example of a subclass of ModelWrapper is the RandomForestModelWrapper, which is also found in utils/models.py. The RandomForestModelWrapper client usage example is in training/train.py and is partially shown below:

from utils import models

# Create and train model
mw = models.RandomForestModelWrapper(
    feature_columns=feature_columns, model_params=model_params)
mw.train(train_df, label_column)

# Score model
train_score = mw.score(train_df, label_column)
test_score = mw.score(test_df, label_column)

mw.add_data_path('train_df', train_file_path)
mw.add_data_path('test_df', test_file_path)
mw.add_metric('train_f1', train_score)
mw.add_metric('test_f1', test_score)

# Save model
print(mw.save('training/models'))

# Load latest model version
reloaded_mw = models.RandomForestModelWrapper.load('training/models')
test_preds = reloaded_mw.predict(test_df)

Roadmap

See the open issues for tickets corresponding to feature ideas. The issues in this repo are mainly tagged either data science or engineering.

Contributing

Having a toy example of an ML pipeline isn't just nice to have for people experimenting with MLOps tools. ML beginners or data science enthusiasts looking to understand how to build pipelines around ML models can also benefit from this repository.

Anyone is welcome to contribute, and your contribution is greatly appreciated! Feel free to either create issues or pull requests to address issues.

  1. Fork the repo
  2. Create your branch (git checkout -b YOUR_GITHUB_USERNAME/somefeature)
  3. Make changes and add files to the commit (git add .)
  4. Commit your changes (git commit -m 'Add something')
  5. Push to your branch (git push origin YOUR_GITHUB_USERNAME/somefeature)
  6. Make a pull request

Contact

Original author: Shreya Shankar

Email: [email protected]

Owner
Shreya Shankar
Trying to make machine learning work in the real world. Previously at @viaduct-ai, @google-research, @facebook, and @Stanford computer science.
Shreya Shankar
Code for the paper "Are Sixteen Heads Really Better than One?"

Are Sixteen Heads Really Better than One? This repository contains code to reproduce the experiments in our paper Are Sixteen Heads Really Better than

Paul Michel 143 Dec 14, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 04, 2023
ACL22 paper: Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost

Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost LOVE is accpeted by ACL22 main conference as a long pape

Lihu Chen 32 Jan 03, 2023
The swas programming language

The Swas programming language This is a language that was made for fun. Installation Step 0: Make sure you have python installed Step 1. Clone this re

Swas.py 19 Jul 18, 2022
Semantic search for quotes.

squote A semantic search engine that takes some input text and returns some (questionably) relevant (questionably) famous quotes. Built with: bert-as-

cjwallace 11 Jun 25, 2022
Conversational text Analysis using various NLP techniques

Conversational text Analysis using various NLP techniques

Rita Anjana 159 Jan 06, 2023
Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Ubiquitous Knowledge Processing Lab 748 Jan 06, 2023
A raytrace framework using taichi language

ti-raytrace The code use Taichi programming language Current implement acceleration lvbh disney brdf How to run First config your anaconda workspace,

蕉太狼 73 Dec 11, 2022
Ecommerce product title recognition package

revizor This package solves task of splitting product title string into components, like type, brand, model and article (or SKU or product code or you

Bureaucratic Labs 16 Mar 03, 2022
Backend for the Autocomplete platform. An AI assisted coding platform.

Introduction A custom predictor allows you to deploy your own prediction implementation, useful when the existing serving implementations don't fit yo

Tatenda Christopher Chinyamakobvu 1 Jan 31, 2022
In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Making Emojis More Predictable by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad

Karanjot Singh 2 Jan 17, 2022
🌐 Translation microservice powered by AI

Dot Translate 🌐 A microservice for quick and local translation using A.I. This service starts a local webserver used for neural machine translation.

Dot HQ 48 Nov 22, 2022
Faster, modernized fork of the language identification tool langid.py

py3langid py3langid is a fork of the standalone language identification tool langid.py by Marco Lui. Original license: BSD-2-Clause. Fork license: BSD

Adrien Barbaresi 12 Nov 05, 2022
Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written form.

Neural G2P to portuguese language Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written for

fluz 11 Nov 16, 2022
Chinese segmentation library

What is loso? loso is a Chinese segmentation system written in Python. It was developed by Victor Lin ( Fang-Pen Lin 82 Jun 28, 2022

The first online catalogue for Arabic NLP datasets.

Masader The first online catalogue for Arabic NLP datasets. This catalogue contains 200 datasets with more than 25 metadata annotations for each datas

ARBML 94 Dec 26, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 217 Dec 05, 2022
"Investigating the Limitations of Transformers with Simple Arithmetic Tasks", 2021

transformers-arithmetic This repository contains the code to reproduce the experiments from the paper: Nogueira, Jiang, Lin "Investigating the Limitat

Castorini 33 Nov 16, 2022
The official repository of the ISBI 2022 KNIGHT Challenge

KNIGHT The official repository holding the data for the ISBI 2022 KNIGHT Challenge About The KNIGHT Challenge asks teams to develop models to classify

Nicholas Heller 4 Jan 22, 2022
Code and data accompanying Natural Language Processing with PyTorch

Natural Language Processing with PyTorch Build Intelligent Language Applications Using Deep Learning By Delip Rao and Brian McMahan Welcome. This is a

Joostware 1.8k Jan 01, 2023