Toy example of an applied ML pipeline for me to experiment with MLOps tools.

Overview

Toy Machine Learning Pipeline

Table of Contents
  1. About
  2. Getting Started
  3. ML task description and evaluation procedure
  4. Dataset description
  5. Repository structure
  6. Utils documentation
  7. Roadmap
  8. Contributing
  9. Contact

About

This is a toy example of a standalone ML pipeline written entirely in Python. No external tools are incorporated into the master branch. I built this for two reasons:

  1. To experiment with my own ideas for MLOps tools, as it is hard to develop devtools in a vacuum :)
  2. To have something to integrate existing MLOps tools with so I can have real opinions

The following diagram describes the pipeline at a high level. The README describes it in more detail.

Diagram

Getting started

This pipeline is broken down into several components, described in a high level by the directories in this repository. See the Makefile for various commands you can run, but to serve the inference API locally, you can do the following:

  1. git clone the repository
  2. In the root directory of the repo, run make serve
  3. [OPTIONAL] In a new tab, run make inference to ping the API with some sample records

All Python dependencies and virtual environment creation is handled by the Makefile. See setup.py to see the packages installed into the virtual environment, which mainly consist of basic Python packages such as pandas or sklearn.

ML task description and evaluation procedure

We train a model to predict whether a passenger in a NYC taxicab ride will give the driver a large tip. This is a binary classification task. A large tip is arbitrarily defined as greater than 20% of the total fare (before tip). To evaluate the model or measure the efficacy of the model, we measure the F1 score.

The current best model is an instance of sklearn.ensemble.RandomForestClassifier with max_depth of 10 and other default parameters. The test set F1 score is 0.716. I explored this toy task earlier in my debugging ML talk.

Dataset description

We use the yellow taxicab trip records from the NYC Taxi & Limousine Comission public dataset, which is stored in a public aws S3 bucket. The data dictionary can be found here and is also shown below:

Field Name Description
VendorID A code indicating the TPEP provider that provided the record. 1= Creative Mobile Technologies, LLC; 2= VeriFone Inc.
tpep_pickup_datetime The date and time when the meter was engaged.
tpep_dropoff_datetime The date and time when the meter was disengaged.
Passenger_count The number of passengers in the vehicle. This is a driver-entered value.
Trip_distance The elapsed trip distance in miles reported by the taximeter.
PULocationID TLC Taxi Zone in which the taximeter was engaged.
DOLocationID TLC Taxi Zone in which the taximeter was disengaged
RateCodeID The final rate code in effect at the end of the trip. 1= Standard rate, 2=JFK, 3=Newark, 4=Nassau or Westchester, 5=Negotiated fare, 6=Group ride
Store_and_fwd_flag This flag indicates whether the trip record was held in vehicle memory before sending to the vendor, aka “store and forward,” because the vehicle did not have a connection to the server. Y= store and forward trip, N= not a store and forward trip
Payment_type A numeric code signifying how the passenger paid for the trip. 1= Credit card, 2= Cash, 3= No charge, 4= Dispute, 5= Unknown, 6= Voided trip
Fare_amount The time-and-distance fare calculated by the meter.
Extra Miscellaneous extras and surcharges. Currently, this only includes the $0.50 and $1 rush hour and overnight charges.
MTA_tax $0.50 MTA tax that is automatically triggered based on the metered rate in use.
Improvement_surcharge $0.30 improvement surcharge assessed trips at the flag drop. The improvement surcharge began being levied in 2015.
Tip_amount Tip amount – This field is automatically populated for credit card tips. Cash tips are not included.
Tolls_amount Total amount of all tolls paid in trip.
Total_amount The total amount charged to passengers. Does not include cash tips.

Repository structure

The pipeline contains multiple components, each organized into the following high-level subdirectories:

  • etl
  • training
  • inference

Pipeline components

Any applied ML pipeline is essentially a series of functions applied one after the other, such as data transformations, models, and output transformations. This pipeline was initially built in a lightweight fashion to run on a regular laptop with around 8 GB of RAM. The logic in these components is a first pass; there is a lot of room to improve.

The following table describes the components of this pipeline, in order:

Name Description How to run File(s)
Cleaning Reads the dataset (stored in a public S3 bucket) and performs very basic cleaning (drops rows outside the time range or with $0-valued fares) make cleaning etl/cleaning.py
Featuregen Generates basic features for the ML model make featuregen etl/featuregen.py
Split Splits the features into train and test sets make split training/split.py
Training Trains a random forest classifier on the train set and evaluates it on the test set make training training/train.py
Inference Locally serves an API that is essentially a wrapper around the predict function make serve, make inference [inference/app.py, inference/inference.py]

Data storage

The inputs and outputs for the pipeline components, as well as other artifacts, are stored in a public S3 bucket named toy-applied-ml-pipeline located in us-west-1. Read access is universal and doesn't require special permissions. Write access is limited to those with credentials. If you are interested in contributing and want write access, please contact me directly describing how you would like to be involved, and I can send you keys.

The bucket has a scratch folder, where random scratch files live. These random scratch files were likely generated by the write_file function in utils.io. The bulk of the bucket lies in the dev directory, or s3://toy-applied-ml-pipeline/dev.

The dev directory's subdirectories represent the components in the pipeline. These subdirectories contain the outputs of each component respectively, where the outputs are versioned with the timestamp the component was run. The utils.io library contains helper functions to write outputs and load the latest component output as input to another component. To inspect the filesystem structure further, you can call io.list_files(dirname), which returns the immediate files in dirname.

If you have write permissions, store your keys/ids in an .env file, and the Makefile will automatically pick it up. If you do not have write permissions, you will run into an error if you try to write to the S3 bucket.

Utils documentation

The utils directory contains helper functions and abstractions for expanding upon the current pipeline. Tests are in utils/tests.py. Note that only the io functions are tested as of now.

io

utils/io.py contains various helper functions to interface with S3. The two most useful functions are:

def load_output_df(component: str, dev: bool = True, version: str = None) -> pd.DataFrame:
  """
    This function loads the latest version of data that was produced by a component.
    Args:
        component (str): component name that we want to get the output from
        dev (bool): whether this is run in development or "production" mode
        version (str, optional): specified version of the data
    Returns:
        df (pd.DataFrame): dataframe corresponding to the data in the latest version of the output for the specified component
    """
    ...

def save_output_df(df: pd.DataFrame, component: str, dev: bool = True, overwrite: bool = False, version: str = None) -> str:
    """
    This function writes the output of a pipeline component (a dataframe) to a parquet file.
    Args:
        df (pd.DataFrame): dataframe representing the output
        component (str): name of the component that produced the output (ex: clean)
        dev (bool, optional): whether this is run in development or "production" mode
        overwrite (bool, optional): whether to overwrite a file with the same name
        version (str, optional): optional version for the output. If not specified, the function will create the version number.
    Returns:
        path (str): Full path that the file can be accessed at
    """
    ...

Note that save_output_df's default parameters are set such that you cannot overwrite an existing file. You can change this by setting overwrite = True.

Feature generators

utils.feature_generators.py contains the lightweight abstraction for a feature generator to make it easy for someone to create a new feature. The abstraction is as follows:

class FeatureGenerator(ABC):
    """Abstract class for a feature generator."""

    def __init__(self, name: str, required_columns: typing.List[str]):
        """Constructor stores the name of the feature and columns required in a df to construct that feature."""
        self.name = name
        self.required_columns = required_columns

    @abstractmethod
    def compute(self):
        pass

    @abstractmethod
    def schema(self):
        pass

See utils.feature_generators.py for examples on how to create specific feature types and etl/featuregen.py for an example on how to create the actual instances of the features themselves.

Models

utils/models.py contains the ModelWrapper abstraction. This abstraction is essentially a wrapper around a model and consists of:

  • the model binary
  • pointer to dataset(s)
  • metric values

To use this abstraction, you must create a subclass of ModelWrapper and implement the preprocess, train, predict, and score methods. The base class also provides methods to save and load the ModelWrapper object. It will fail to save if the client has not added data paths and metrics to the object.

An example of a subclass of ModelWrapper is the RandomForestModelWrapper, which is also found in utils/models.py. The RandomForestModelWrapper client usage example is in training/train.py and is partially shown below:

from utils import models

# Create and train model
mw = models.RandomForestModelWrapper(
    feature_columns=feature_columns, model_params=model_params)
mw.train(train_df, label_column)

# Score model
train_score = mw.score(train_df, label_column)
test_score = mw.score(test_df, label_column)

mw.add_data_path('train_df', train_file_path)
mw.add_data_path('test_df', test_file_path)
mw.add_metric('train_f1', train_score)
mw.add_metric('test_f1', test_score)

# Save model
print(mw.save('training/models'))

# Load latest model version
reloaded_mw = models.RandomForestModelWrapper.load('training/models')
test_preds = reloaded_mw.predict(test_df)

Roadmap

See the open issues for tickets corresponding to feature ideas. The issues in this repo are mainly tagged either data science or engineering.

Contributing

Having a toy example of an ML pipeline isn't just nice to have for people experimenting with MLOps tools. ML beginners or data science enthusiasts looking to understand how to build pipelines around ML models can also benefit from this repository.

Anyone is welcome to contribute, and your contribution is greatly appreciated! Feel free to either create issues or pull requests to address issues.

  1. Fork the repo
  2. Create your branch (git checkout -b YOUR_GITHUB_USERNAME/somefeature)
  3. Make changes and add files to the commit (git add .)
  4. Commit your changes (git commit -m 'Add something')
  5. Push to your branch (git push origin YOUR_GITHUB_USERNAME/somefeature)
  6. Make a pull request

Contact

Original author: Shreya Shankar

Email: [email protected]

Owner
Shreya Shankar
Trying to make machine learning work in the real world. Previously at @viaduct-ai, @google-research, @facebook, and @Stanford computer science.
Shreya Shankar
🐍 A hyper-fast Python module for reading/writing JSON data using Rust's serde-json.

A hyper-fast, safe Python module to read and write JSON data. Works as a drop-in replacement for Python's built-in json module. This is alpha software

Matthias 479 Jan 01, 2023
Toward a Visual Concept Vocabulary for GAN Latent Space, ICCV 2021

Toward a Visual Concept Vocabulary for GAN Latent Space Code and data from the ICCV 2021 paper Sarah Schwettmann, Evan Hernandez, David Bau, Samuel Kl

Sarah Schwettmann 13 Dec 23, 2022
The source code of "Language Models are Few-shot Multilingual Learners" (MRL @ EMNLP 2021)

Language Models are Few-shot Multilingual Learners Paper This is the source code of the paper [Arxiv] [ACL Anthology]: This code has been written usin

Genta Indra Winata 45 Nov 21, 2022
Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer

MT5_paddle Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer English | 简体中文 mT5: A Massively

2 Oct 17, 2021
simpleT5 is built on top of PyTorch-lightning⚡️ and Transformers🤗 that lets you quickly train your T5 models.

Quickly train T5 models in just 3 lines of code + ONNX support simpleT5 is built on top of PyTorch-lightning ⚡️ and Transformers 🤗 that lets you quic

Shivanand Roy 220 Dec 30, 2022
Collection of useful (to me) python scripts for interacting with napari

Napari scripts A collection of napari related tools in various state of disrepair/functionality. Browse_LIF_widget.py This module can be imported, for

5 Aug 15, 2022
Visual Automata is a Python 3 library built as a wrapper for Caleb Evans' Automata library to add more visualization features.

Visual Automata Copyright 2021 Lewi Lie Uberg Released under the MIT license Visual Automata is a Python 3 library built as a wrapper for Caleb Evans'

Lewi Uberg 55 Nov 17, 2022
Pretrain CPM - 大规模预训练语言模型的预训练代码

CPM-Pretrain 版本更新记录 为了促进中文自然语言处理研究的发展,本项目提供了大规模预训练语言模型的预训练代码。项目主要基于DeepSpeed、Megatron实现,可以支持数据并行、模型加速、流水并行的代码。 安装 1、首先安装pytorch等基础依赖,再安装APEX以支持fp16。 p

Tsinghua AI 37 Dec 06, 2022
Tool to add main subject to items on Wikidata using a WMFs CirrusSearch for named entity recognition or a manually supplied list of QIDs

ItemSubjector Tool made to add main subject statements to items based on the title using a home-brewed CirrusSearch-based Named Entity Recognition alg

Dennis Priskorn 9 Nov 17, 2022
Repositório do trabalho de introdução a NLP

Trabalho da disciplina de BI NLP Repositório do trabalho da disciplina Introdução a Processamento de Linguagem Natural da pós BI-Master da PUC-RIO. Eq

Leonardo Lins 1 Jan 18, 2022
Python SDK for working with Voicegain Speech-to-Text

Voicegain Speech-to-Text Python SDK Python SDK for the Voicegain Speech-to-Text API. This API allows for large vocabulary speech-to-text transcription

Voicegain 3 Dec 14, 2022
EMNLP 2021 paper "Pre-train or Annotate? Domain Adaptation with a Constrained Budget".

Pre-train or Annotate? Domain Adaptation with a Constrained Budget This repo contains code and data associated with EMNLP 2021 paper "Pre-train or Ann

Fan Bai 8 Dec 17, 2021
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training

GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training Code and model from our AAAI 2021 paper

Amazon Web Services - Labs 83 Jan 09, 2023
This project deals with a simplified version of a more general problem of Aspect Based Sentiment Analysis.

Aspect_Based_Sentiment_Extraction Created on: 5th Jan, 2022. This project deals with an important field of Natural Lnaguage Processing - Aspect Based

Naman Rastogi 4 Jan 01, 2023
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. IMPORTANT: (30.08.2020) We moved our models

flair 12.3k Dec 31, 2022
A minimal code for fairseq vq-wav2vec model inference.

vq-wav2vec inference A minimal code for fairseq vq-wav2vec model inference. Runs without installing the fairseq toolkit and its dependencies. Usage ex

Vladimir Larin 7 Nov 15, 2022
Semantic search for quotes.

squote A semantic search engine that takes some input text and returns some (questionably) relevant (questionably) famous quotes. Built with: bert-as-

cjwallace 11 Jun 25, 2022
A framework for cleaning Chinese dialog data

A framework for cleaning Chinese dialog data

Yida 136 Dec 20, 2022
Code for Discovering Topics in Long-tailed Corpora with Causal Intervention.

Code for Discovering Topics in Long-tailed Corpora with Causal Intervention ACL2021 Findings Usage 0. Prepare environment Requirements: python==3.6 te

Xiaobao Wu 8 Dec 16, 2022