Research Code for NeurIPS 2020 Spotlight paper "Large-Scale Adversarial Training for Vision-and-Language Representation Learning": UNITER adversarial training part

Overview

VILLA: Vision-and-Language Adversarial Training

This is the official repository of VILLA (NeurIPS 2020 Spotlight). This repository currently supports adversarial finetuning of UNITER on VQA, VCR, NLVR2, and SNLI-VE. Adversarial pre-training with in-domain data will be available soon. Both VILLA-base and VILLA-large pre-trained checkpoints are released.

Overview of VILLA

Most of the code in this repo are copied/modified from UNITER.

Requirements

We provide Docker image for easier reproduction. Please install the following:

Our scripts require the user to have the docker group membership so that docker commands can be run without sudo. We only support Linux with NVIDIA GPUs. We test on Ubuntu 18.04 and V100 cards. We use mixed-precision training hence GPUs with Tensor Cores are recommended.

Quick Start

NOTE: Please run bash scripts/download_pretrained.sh $PATH_TO_STORAGE to get our latest pretrained VILLA checkpoints. This will download both the base and large models.

We use VQA as an end-to-end example for using this code base.

  1. Download processed data and pretrained models with the following command.

    bash scripts/download_vqa.sh $PATH_TO_STORAGE

    After downloading you should see the following folder structure:

    ├── finetune 
    ├── img_db
    │   ├── coco_test2015
    │   ├── coco_test2015.tar
    │   ├── coco_train2014
    │   ├── coco_train2014.tar
    │   ├── coco_val2014
    │   ├── coco_val2014.tar
    │   ├── vg
    │   └── vg.tar
    ├── pretrained
        ├── uniter-base.pt
    │   └── villa-base.pt
    └── txt_db
        ├── vqa_devval.db
        ├── vqa_devval.db.tar
        ├── vqa_test.db
        ├── vqa_test.db.tar
        ├── vqa_train.db
        ├── vqa_train.db.tar
        ├── vqa_trainval.db
        ├── vqa_trainval.db.tar
        ├── vqa_vg.db
        └── vqa_vg.db.tar
    
    

    You can put different pre-trained checkpoints inside the /pretrained folder based on your need.

  2. Launch the Docker container for running the experiments.

    # docker image should be automatically pulled
    source launch_container.sh $PATH_TO_STORAGE/txt_db $PATH_TO_STORAGE/img_db \
        $PATH_TO_STORAGE/finetune $PATH_TO_STORAGE/pretrained

    The launch script respects $CUDA_VISIBLE_DEVICES environment variable. Note that the source code is mounted into the container under /src instead of built into the image so that user modification will be reflected without re-building the image. (Data folders are mounted into the container separately for flexibility on folder structures.)

  3. Run finetuning for the VQA task.

    # inside the container
    horovodrun -np $N_GPU python train_vqa_adv.py --config $YOUR_CONFIG_JSON
    
    # specific example
    horovodrun -np 4 python train_vqa_adv.py --config config/train-vqa-base-4gpu-adv.json
  4. Run inference for the VQA task and then evaluate.

    # inference
    python inf_vqa.py --txt_db /txt/vqa_test.db --img_db /img/coco_test2015 \
    --output_dir $VQA_EXP --checkpoint 6000 --pin_mem --fp16

    The result file will be written at $VQA_EXP/results_test/results_6000_all.json, which can be submitted to the evaluation server

  5. Customization

    # training options
    python train_vqa_adv.py --help
    • command-line argument overwrites JSON config files
    • JSON config overwrites argparse default value.
    • use horovodrun to run multi-GPU training
    • --gradient_accumulation_steps emulates multi-gpu training
    • --checkpoint selects UNITER or VILLA pre-trained checkpoints
    • --adv_training decides using adv. training or not
    • --adv_modality takes values from ['text'], ['image'], ['text','image'], and ['text','image','alter'], the last two correspond to adding perturbations on two modalities simultaneously or alternatively

Downstream Tasks Finetuning

VCR

NOTE: train and inference should be ran inside the docker container

  1. download data
    bash scripts/download_vcr.sh $PATH_TO_STORAGE
    
  2. train
    horovodrun -np 4 python train_vcr_adv.py --config config/train-vcr-base-4gpu-adv.json \
        --output_dir $VCR_EXP
    
  3. inference
    horovodrun -np 4 python inf_vcr.py --txt_db /txt/vcr_test.db \
        --img_db "/img/vcr_gt_test/;/img/vcr_test/" \
        --split test --output_dir $VCR_EXP --checkpoint 8000 \
        --pin_mem --fp16
    
    The result file will be written at $VCR_EXP/results_test/results_8000_all.csv, which can be submitted to VCR leaderboard for evaluation.

NLVR2

NOTE: train and inference should be ran inside the docker container

  1. download data
    bash scripts/download_nlvr2.sh $PATH_TO_STORAGE
    
  2. train
    horovodrun -np 4 python train_nlvr2_adv.py --config config/train-nlvr2-base-1gpu-adv.json \
        --output_dir $NLVR2_EXP
    
  3. inference
    python inf_nlvr2.py --txt_db /txt/nlvr2_test1.db/ --img_db /img/nlvr2_test/ \
    --train_dir /storage/nlvr-base/ --ckpt 6500 --output_dir . --fp16
    

Visual Entailment (SNLI-VE)

NOTE: train should be ran inside the docker container

  1. download data
    bash scripts/download_ve.sh $PATH_TO_STORAGE
    
  2. train
    horovodrun -np 2 python train_ve_adv.py --config config/train-ve-base-2gpu-adv.json \
        --output_dir $VE_EXP
    

Adversarial Training of LXMERT

To keep things simple, we provide another separate repo that can be used to reproduce our results on adversarial finetuning of LXMERT on VQA, GQA, and NLVR2.

Citation

If you find this code useful for your research, please consider citing:

@inproceedings{gan2020large,
  title={Large-Scale Adversarial Training for Vision-and-Language Representation Learning},
  author={Gan, Zhe and Chen, Yen-Chun and Li, Linjie and Zhu, Chen and Cheng, Yu and Liu, Jingjing},
  booktitle={NeurIPS},
  year={2020}
}

@inproceedings{chen2020uniter,
  title={Uniter: Universal image-text representation learning},
  author={Chen, Yen-Chun and Li, Linjie and Yu, Licheng and Kholy, Ahmed El and Ahmed, Faisal and Gan, Zhe and Cheng, Yu and Liu, Jingjing},
  booktitle={ECCV},
  year={2020}
}

License

MIT

Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Jan 08, 2023
Research Code for NeurIPS 2020 Spotlight paper "Large-Scale Adversarial Training for Vision-and-Language Representation Learning": UNITER adversarial training part

VILLA: Vision-and-Language Adversarial Training This is the official repository of VILLA (NeurIPS 2020 Spotlight). This repository currently supports

Zhe Gan 109 Dec 31, 2022
A list of NLP(Natural Language Processing) tutorials

NLP Tutorial A list of NLP(Natural Language Processing) tutorials built on PyTorch. Table of Contents A step-by-step tutorial on how to implement and

Allen Lee 1.3k Dec 25, 2022
Kestrel Threat Hunting Language

Kestrel Threat Hunting Language What is Kestrel? Why we need it? How to hunt with XDR support? What is the science behind it? You can find all the ans

Open Cybersecurity Alliance 201 Dec 16, 2022
Tutorial to pretrain & fine-tune a 🤗 Flax T5 model on a TPUv3-8 with GCP

Pretrain and Fine-tune a T5 model with Flax on GCP This tutorial details how pretrain and fine-tune a FlaxT5 model from HuggingFace using a TPU VM ava

Gabriele Sarti 41 Nov 18, 2022
Python utility library for compositing PDF documents with reportlab.

pdfdoc-py Python utility library for compositing PDF documents with reportlab. Installation The pdfdoc-py package can be installed directly from the s

Michael Gale 1 Jan 06, 2022
Host your own GPT-3 Discord bot

GPT3 Discord Bot Host your own GPT-3 Discord bot i'd host and make the bot invitable myself, however GPT3 terms of service prohibit public use of GPT3

[something hillarious here] 8 Jan 07, 2023
Simple multilingual lemmatizer for Python, especially useful for speed and efficiency

Simplemma: a simple multilingual lemmatizer for Python Purpose Lemmatization is the process of grouping together the inflected forms of a word so they

Adrien Barbaresi 70 Dec 29, 2022
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Dec 28, 2022
SIGIR'22 paper: Axiomatically Regularized Pre-training for Ad hoc Search

Introduction This codebase contains source-code of the Python-based implementation (ARES) of our SIGIR 2022 paper. Chen, Jia, et al. "Axiomatically Re

Jia Chen 17 Nov 09, 2022
Searching keywords in PDF file folders

keyword_searching Steps to use this Python scripts: (1)Paste this script into the file folder containing the PDF files you need to search from; (2)Thi

1 Nov 08, 2021
Opal-lang - A WIP programming language based on Python

thanks to aphitorite for the beautiful logo! opal opal is a WIP transcompiled pr

3 Nov 04, 2022
Based on 125GB of data leaked from Twitch, you can see their monthly revenues from 2019-2021

Twitch Revenues Bu script'i kullanarak istediğiniz yayıncıların, Twitch'den sızdırılan 125 GB'lik veriye dayanarak, 2019-2021 arası aylık gelirlerini

4 Nov 11, 2021
This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe

Advent-of-cyber-2019-writeup This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe https://tryhackme.com/shivam007/badges/c

shivam danawale 5 Jul 17, 2022
AutoGluon: AutoML for Text, Image, and Tabular Data

AutoML for Text, Image, and Tabular Data AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in yo

Amazon Web Services - Labs 5.2k Dec 29, 2022
AMUSE - financial summarization

AMUSE AMUSE - financial summarization Unzip data.zip Train new model: python FinAnalyze.py --task train --start 0 --count how many files,-1 for all

1 Jan 11, 2022
Shared code for training sentence embeddings with Flax / JAX

flax-sentence-embeddings This repository will be used to share code for the Flax / JAX community event to train sentence embeddings on 1B+ training pa

Nils Reimers 23 Dec 30, 2022
Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow. This is part of the CASL project: http://casl-project.ai/

Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides

ASYML 2.3k Jan 07, 2023
A2T: Towards Improving Adversarial Training of NLP Models (EMNLP 2021 Findings)

A2T: Towards Improving Adversarial Training of NLP Models This is the source code for the EMNLP 2021 (Findings) paper "Towards Improving Adversarial T

QData 17 Oct 15, 2022
This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab.

Speech-Backbones This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab. Grad-TTS Official implementation of the Grad-

HUAWEI Noah's Ark Lab 295 Jan 07, 2023