Transformer training code for sequential tasks

Overview

Sequential Transformer

This is a code for training Transformers on sequential tasks such as language modeling. Unlike the original Transformer architecture, it uses caching of previous representations and relative position embeddings to better adapt to sequential tasks. In addition, the code also implements the following projects as described below and in this blog post:

Requirements

You need PyTorch 0.4.1 or above and a cuda-enabled GPU to run the code. If there are multiple GPUs available, the code uses nn.DataParallel to utilize them. For better efficiency, enable distributed training by --distributed argument, which can run on multiple nodes.

Adaptive Attention Span

This code can be used for running experiments in Adaptive Attention Span for Transformers paper. The adaptive span allows a model to learn an optimal context size for each self-attention head from training data. As shown in the below figure, only few heads require long attention span, thus making it possible to increase the context size to 8k tokens without increasing computation time and memory footprint significantly.

An argument --adapt-span enables adaptive span. Otherwise a model will have a fixed attention span. The adaptive-span is implemented as a nn.Module to make it easier to plug it into other models.

Running experiments in the paper

Scripts for running experiments in the paper are located in ./experiments/ directory. For example, a smaller 8-layer version of our model can be trained on a single GPU by running:

bash experiments/enwik8_small.sh

It should reach about 1.3bpc on dev after 150k steps.

For training larger models, multiple GPUs are recommended. In the script files, you can configure the number of available GPUs. Increase the --batch-split argument if you run out of GPU memory (it splits batches into smaller pieces without changing the final result).

We obtained the following results in our experiments:

Experiment #params dev test
enwik8 38M 1.04 bpb 1.02 bpb
enwik8_large 209M 1.00 bpb 0.98 bpb
text8 39M 1.05 bpc 1.11 bpc
text8_large 209M 1.01 bpc 1.07 bpc

A large model training takes about 1.2sec/batch near the end (initially it's faster because the attention spans are smaller) on 8 V100 GPUs. So, for example, the whole enwik8_large training of 170k steps should take less than 2.4 days.

Pre-trained models

You can download pre-trained models by running the get_pretrained.sh script. Then the same scripts in ./experiments/ can be used to evaluate those models. Since the download script puts models in ./checkpoints/, make sure there is no file with the same name. Note that these pre-trained models are obtained by rerunning the training scripts after the code cleanup, so there are small differences from the above results due to the randomness of the training.

All-attention Network

The code also can be used for training All-attention Networks introduced in Augmenting Self-attention with Persistent Memory. If --pers-mem-size argument is set to N, all FF sublayers will be removed from the model and N persistent memory vectors will be added to every self-attention sublayer. The following experiments can be found in ./experiments/ directory.

Experiment #params dev test
enwik8_pers_small.sh 39M 1.03 bpb 1.01 bpb
enwik8_pers.sh 114M 1.00 bpb 0.98 bpb
wiki103_pers.sh 133M 18.8 ppl * 19.7 ppl *

(*This number is slightly better than the paper because it includes end-of-line as a token.)

License

The code is licensed under CC-BY-NC license. See the LICENSE file for more details.

Acknowledgement

We thank Xavier Martinet for helping with cleaning the code. The data preprocessing scripts are downloaded from awd-lstm and transformer-XL repos. The adagrad_with_grad_clip.py is mostly adapted from PyTorch.

Owner
Meta Research
Meta Research
A Python script which randomly chooses and prints a file from a directory.

___ ____ ____ _ __ ___ / _ \ | _ \ | _ \ ___ _ __ | '__| / _ \ | |_| || | | || | | | / _ \| '__| | | | __/ | _ || |_| || |_| || __

yesmaybenookay 0 Aug 06, 2021
Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables

Mortgage-Application-Analysis Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables: age, in

1 Jan 29, 2022
Coreference resolution for English, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, msg systems ag 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 German 1.2.3 Polish 1

msg systems ag 169 Dec 21, 2022
This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini!

About CappuccinoJs This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini! Este conversor criar

Arthur Ottoni Ribeiro 48 Nov 15, 2022
LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language

LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language ⚖️ The library of Natural Language Processing for Brazilian legal lang

Felipe Maia Polo 125 Dec 20, 2022
Blackstone is a spaCy model and library for processing long-form, unstructured legal text

Blackstone Blackstone is a spaCy model and library for processing long-form, unstructured legal text. Blackstone is an experimental research project f

ICLR&D 579 Jan 08, 2023
ASCEND Chinese-English code-switching dataset

ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong.

CAiRE 11 Dec 09, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

🤗 Contributing to OpenSpeech 🤗 OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform ta

Openspeech TEAM 513 Jan 03, 2023
Tools, wrappers, etc... for data science with a concentration on text processing

Rosetta Tools for data science with a focus on text processing. Focuses on "medium data", i.e. data too big to fit into memory but too small to necess

207 Nov 22, 2022
Text classification is one of the popular tasks in NLP that allows a program to classify free-text documents based on pre-defined classes.

Deep-Learning-for-Text-Document-Classification Text classification is one of the popular tasks in NLP that allows a program to classify free-text docu

Happy N. Monday 2 Mar 17, 2022
A 30000+ Chinese MRC dataset - Delta Reading Comprehension Dataset

Delta Reading Comprehension Dataset 台達閱讀理解資料集 Delta Reading Comprehension Dataset (DRCD) 屬於通用領域繁體中文機器閱讀理解資料集。 本資料集期望成為適用於遷移學習之標準中文閱讀理解資料集。 本資料集從2,108篇

272 Dec 15, 2022
Various capabilities for static malware analysis.

Malchive The malchive serves as a compendium for a variety of capabilities mainly pertaining to malware analysis, such as scripts supporting day to da

MITRE Cybersecurity 64 Nov 22, 2022
Learn meanings behind words is a key element in NLP. This project concentrates on the disambiguation of preposition senses. Therefore, we train a bert-transformer model and surpass the state-of-the-art.

New State-of-the-Art in Preposition Sense Disambiguation Supervisor: Prof. Dr. Alexander Mehler Alexander Henlein Institutions: Goethe University TTLa

Dirk Neuhäuser 4 Apr 06, 2022
Beyond the Imitation Game collaborative benchmark for enormous language models

BIG-bench 🪑 The Beyond the Imitation Game Benchmark (BIG-bench) will be a collaborative benchmark intended to probe large language models, and extrap

Google 1.3k Jan 01, 2023
Optimal Transport Tools (OTT), A toolbox for all things Wasserstein.

Optimal Transport Tools (OTT), A toolbox for all things Wasserstein. See full documentation for detailed info on the toolbox. The goal of OTT is to pr

OTT-JAX 255 Dec 26, 2022
PyTorch Implementation of the paper Single Image Texture Translation for Data Augmentation

SITT The repo contains official PyTorch Implementation of the paper Single Image Texture Translation for Data Augmentation. Authors: Boyi Li Yin Cui T

Boyi Li 52 Jan 05, 2023
Random-Word-Generator - Generates meaningful words from dictionary with given no. of letters and words.

Random Word Generator Generates meaningful words from dictionary with given no. of letters and words. This might be useful for generating short links

Mohammed Rabil 1 Jan 01, 2022
Fake Shakespearean Text Generator

Fake Shakespearean Text Generator This project contains an impelementation of stateful Char-RNN model to generate fake shakespearean texts. Files and

Recep YILDIRIM 1 Feb 15, 2022
Clone a voice in 5 seconds to generate arbitrary speech in real-time

This repository is forked from Real-Time-Voice-Cloning which only support English. English | 中文 Features 🌍 Chinese supported mandarin and tested with

Weijia Chen 25.6k Jan 06, 2023
IMDB film review sentiment classification based on BERT's supervised learning model.

IMDB film review sentiment classification based on BERT's supervised learning model. On the other hand, the model can be extended to other natural language multi-classification tasks.

Paris 1 Apr 17, 2022