Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis

Overview

MLP Singer

Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis. Audio samples are available on our demo page.

Abstract

Recent developments in deep learning have significantly improved the quality of synthesized singing voice audio. However, prominent neural singing voice synthesis systems suffer from slow inference speed due to their autoregressive design. Inspired by MLP-Mixer, a novel architecture introduced in the vision literature for attention-free image classification, we propose MLP Singer, a parallel Korean singing voice synthesis system. To the best of our knowledge, this is the first work that uses an entirely MLP-based architecture for voice synthesis. Listening tests demonstrate that MLP Singer outperforms a larger autoregressive GAN-based system, both in terms of audio quality and synthesis speed. In particular, MLP Singer achieves a real-time factor of up to 200 and 3400 on CPUs and GPUs respectively, enabling order of magnitude faster generation on both environments.

Citation

Please cite this work as follows.

@misc{tae2021mlp,
      title={MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis}, 
      author={Jaesung Tae and Hyeongju Kim and Younggun Lee},
      year={2021},
}

Quickstart

  1. Clone the repository including the git submodule.

    git clone --recurse-submodules https://github.com/neosapience/mlp-singer.git
  2. Install package requirements.

cd mlp-singer
pip install -r requirements.txt
  1. To generate audio files with the trained model checkpoint, download the HiFi-GAN checkpoint along with its configuration file and place them in hifi-gan.

  2. Run inference using the following command. Generated audio samples are saved in the samples directory by default.

    python inference.py --checkpoint_path checkpoints/default/model.pt

Dataset

We used the Children Song Dataset, an open-source singing voice dataset comprised of 100 annotated Korean and English children songs sung by a single professional singer. We used only the Korean subset of the dataset to train the model.

You can train the model on any custom dataset of your choice, as long as it includes lyrics text, midi transcriptions, and monophonic a capella audio file triplets. These files should be titled identically, and should also be placed in specific directory locations as shown below.

├── data
│   └── raw
│       ├── mid
│       ├── txt
│       └── wav

The directory names correspond to file extensions. We have included a sample as reference.

Preprocessing

Once you have prepared the dataset, run

python -m data.serialize

from the root directory. This will create data/bin that contains binary files used for training. This repository already contains example binary files created from the sample in data/raw.

Training

To train the model, run

python train.py

This will read the default configuration file located in configs/model.json to initialize the model. Alternatively, you can also create a new configuration and train the model via

python train.py --config_path PATH/TO/CONFIG.json

Running this command will create a folder under the checkpoints directory according to the name field specified in the configuration file.

You can also continue training from a checkpoint. For example, to resume training from the provided pretrained model checkpoint, run

python train.py --checkpoint_path /checkpoints/default/model.pt

Unless a --config_path flag is explicitly provided, the script will read config.json in the checkpoint directory. In both cases, model checkpoints will be saved regularly according to the interval defined in the configuration file.

Inference

MLP Singer produces mel-spectrograms, which are then fed into a neural vocoder to generate raw waveforms. This repository uses HiFi-GAN as the vocoder backend, but you can also plug other vocoders like WaveGlow. To generate samples, run

python inference.py --checkpoint_path PATH/TO/CHECKPOINT.pt --song little_star

This will create .wav samples in the samples directory, and save mel-spectrogram files as .npy files in hifi-gan/test_mel_dirs.

You can also specify any song you want to perform inference on, as long as the song is present in data/raw. The argument to the --song flag should match the title of the song as it is saved in data/raw.

Note

For demo and internal experiments, we used a variant of HiFi-GAN that used different mel-spectrogram configurations. As such, the provided checkpoint for MLP Singer is different from the one referred to in the paper. Moreover, the vocoder used in the demo was further fine-tuned on the Children's Song Dataset.

Acknowledgements

This implementation was inspired by the following repositories.

License

Released under the MIT License.

Owner
Neosapience
Neosapience, an artificial being enabled by artificial intelligence, will soon be everywhere in our daily lives.
Neosapience
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
GNES enables large-scale index and semantic search for text-to-text, image-to-image, video-to-video and any-to-any content form

GNES is Generic Neural Elastic Search, a cloud-native semantic search system based on deep neural network.

GNES.ai 1.2k Jan 06, 2023
Honor's thesis project analyzing whether the GPT-2 model can more effectively generate free-verse or structured poetry.

gpt2-poetry The following code is for my senior honor's thesis project, under the guidance of Dr. Keith Holyoak at the University of California, Los A

Ashley Kim 2 Jan 09, 2022
Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing

Trankit: A Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing Trankit is a light-weight Transformer-based Pyth

652 Jan 06, 2023
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Approximately Correct Machine Intelligence (ACMI) Lab 21 Nov 24, 2022
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".

Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode

ICTNLP 90 Dec 27, 2022
To be a next-generation DL-based phenotype prediction from genome mutations.

Sequence -----------+-- 3D_structure -- 3D_module --+ +-- ? | |

Eric Alcaide 18 Jan 11, 2022
Model for recasing and repunctuating ASR transcripts

Recasing and punctuation model based on Bert Benoit Favre 2021 This system converts a sequence of lowercase tokens without punctuation to a sequence o

Benoit Favre 88 Dec 29, 2022
Incorporating KenLM language model with HuggingFace implementation of Wav2Vec2CTC Model using beam search decoding

Wav2Vec2CTC With KenLM Using KenLM ARPA language model with beam search to decode audio files and show the most probable transcription. Assuming you'v

farisalasmary 65 Sep 21, 2022
Python utility library for compositing PDF documents with reportlab.

pdfdoc-py Python utility library for compositing PDF documents with reportlab. Installation The pdfdoc-py package can be installed directly from the s

Michael Gale 1 Jan 06, 2022
This is a project built for FALLABOUT2021 event under SRMMIC, This project deals with NLP poetry generation.

FALLABOUT-SRMMIC 21 POETRY-GENERATION HINGLISH DESCRIPTION We have developed a NLP(natural language processing) model which automatically generates a

7 Sep 28, 2021
Lattice methods in TensorFlow

TensorFlow Lattice TensorFlow Lattice is a library that implements constrained and interpretable lattice based models. It is an implementation of Mono

504 Dec 20, 2022
Natural language Understanding Toolkit

Natural language Understanding Toolkit TOC Requirements Installation Documentation CLSCL NER References Requirements To install nut you need: Python 2

Peter Prettenhofer 119 Oct 08, 2022
SDL: Synthetic Document Layout dataset

SDL is the project that synthesizes document images. It facilitates multiple-level labeling on document images and can generate in multiple languages.

Sơn Nguyễn 0 Oct 07, 2021
Checking spelling of form elements

Checking spelling of form elements. You can check the source files of external workflows/reports and configuration files

СКБ Контур (команда 1с) 15 Sep 12, 2022
Minimal GUI for accessing the Watson Text to Speech service.

Description Minimal graphical application for accessing the Watson Text to Speech service. Requirements Python 3 plus all dependencies listed in requi

Moritz Maxeiner 1 Oct 22, 2021
Implementation for paper BLEU: a Method for Automatic Evaluation of Machine Translation

BLEU Score Implementation for paper: BLEU: a Method for Automatic Evaluation of Machine Translation Author: Ba Ngoc from ProtonX BLEU score is a popul

Ngoc Nguyen Ba 6 Oct 07, 2021
The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models

Graformer The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models Graformer (also named BridgeTransformer in t

22 Dec 14, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
Code for ACL 2020 paper "Rigid Formats Controlled Text Generation"

SongNet SongNet: SongCi + Song (Lyrics) + Sonnet + etc. @inproceedings{li-etal-2020-rigid, title = "Rigid Formats Controlled Text Generation",

Piji Li 212 Dec 17, 2022