The training code for the 4th place model at MDX 2021 leaderboard A.

Overview

This repository contains the training code of our winning model at Music Demixing Challenge 2021, which got the 4th place on leaderboard A (6th in overall), and help us (Kazane Ryo no Danna) winned the bronze prize.

Model Summary

Our final winning approach blends the outputs from three models, which are:

  1. model 1: A X-UMX model [1] which is initialized with the weights of the official baseline, and is fine-tuned with a modified Combinational Multi-Domain Loss from [1]. In particular, we implement and apply a differentiable Multichannel Wiener Filter (MWF) [2] before the loss calculation, and compute the frequency-domain L2 loss with raw complex values.

  2. model 2: A U-Net which is similar to Spleeter [3], where all convolution layers are replaced by D3 Blocks from [4], and two layers of 2D local attention are applied at the bottleneck similar to [5].

  3. model 3: A modified version of Demucs [6], where the original decoding module is replaced by four independent decoders, each of which corresponds to one source.

We didn't encounter overfitting in our pilot experiments, so we used the full musdb training set for all the models above, and stopped training upon convergence of the loss function.

The weights of the three outputs are determined empirically:

Drums Bass Other Vocals
model 1 0.2 0.1 0 0.2
model 2 0.2 0.17 0.5 0.4
model 3 0.6 0.73 0.5 0.4

For the spectrogram-based models (model 1 and 2), we apply MWF to the outputs with one iteration before the fusion.

[1] Sawata, Ryosuke, et al. "All for One and One for All: Improving Music Separation by Bridging Networks." ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021.

[2] Antoine Liutkus, & Fabian-Robert Stöter. (2019). sigsep/norbert: First official Norbert release (v0.2.0). Zenodo. https://doi.org/10.5281/zenodo.3269749

[3] Hennequin, Romain, et al. "Spleeter: a fast and efficient music source separation tool with pre-trained models." Journal of Open Source Software 5.50 (2020): 2154.

[4] Takahashi, Naoya, and Yuki Mitsufuji. "D3net: Densely connected multidilated densenet for music source separation." arXiv preprint arXiv:2010.01733 (2020).

[5] Wu, Yu-Te, Berlin Chen, and Li Su. "Multi-Instrument Automatic Music Transcription With Self-Attention-Based Instance Segmentation." IEEE/ACM Transactions on Audio, Speech, and Language Processing 28 (2020): 2796-2809.

[6] Défossez, Alexandre, et al. "Music source separation in the waveform domain." arXiv preprint arXiv:1911.13254 (2019).

How to reproduce the training

Install Requirements / Build Virtual Environment

We recommend using conda.

conda env create -f environment.yml
conda activate demixing

Prepare Data

Please download musdb, and edit the "root" parameters in all the json files listed under configs/ to the path where you have the dataset.

Training Model 1

First download the pre-trained model:

wget https://zenodo.org/record/4740378/files/pretrained_xumx_musdb18HQ.pth

Copy the weights for initializing our model:

python xumx_weights_convert.py pretrained_xumx_musdb18HQ.pth xumx_weights.pth

Start training!

python train.py configs/x_umx_mwf.json --weights xumx_weights.pth

Checkpoints will be located under saved/. The config was set to run on a single RTX 3070.

Training Model 2

python train.py configs/unet_attn.json --device_ids 0 1 2 3

Checkpoints will be located under saved/. The config was set to run on four Tesla V100.

Training Model 3

python train.py configs/demucs_split.json

Checkpoints will be located under saved/. The config was set to run on a single RTX 3070, using gradient accumulation and mixed precision training.

Tensorboard Logging

You can monitor the training process using tensorboard:

tesnorboard --logdir runs/

Inference

First make sure you installed danna-sep. Then convert your checkpoints into jit scripts and replace the files under DANNA_CHECKPOINTS:

python jit_convert.py configs/x_umx_mwf.json saved/CrossNet\ Open-Unmix_checkpoint_XXX.pt $DANNA_CHECKPOINTS/xumx_mwf.pth

python jit_convert.py configs/unet_attn.json saved/UNet\ Attention_checkpoint_XXX.pt $DANNA_CHECKPOINTS/unet_attention.pth

python jit_convert.py configs/demucs_split.json saved/DemucsSplit_checkpoint_XXX.pt $DANNA_CHECKPOINTS/demucs_4_decoders.pth

Now you can use danna-sep to separate you favorite music and see how it works!

Additional Resources

Owner
Chin-Yun Yu
I'm a Djentle man. When I hear 0000000 I click like.
Chin-Yun Yu
This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

Graph4AI 230 Nov 22, 2022
Turn clang-tidy warnings and fixes to comments in your pull request

clang-tidy pull request comments A GitHub Action to post clang-tidy warnings and suggestions as review comments on your pull request. What platisd/cla

Dimitris Platis 30 Dec 13, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
An assignment from my grad-level data mining course demonstrating some experience with NLP/neural networks/Pytorch

NLP-Pytorch-Assignment An assignment from my grad-level data mining course (before I started personal projects) demonstrating some experience with NLP

David Thorne 0 Feb 06, 2022
Python3 to Crystal Translation using Python AST Walker

py2cr.py A code translator using AST from Python to Crystal. This is basically a NodeVisitor with Crystal output. See AST documentation (https://docs.

66 Jul 25, 2022
Continuously update some NLP practice based on different tasks.

NLP_practice We will continuously update some NLP practice based on different tasks. prerequisites Software pytorch = 1.10 torchtext = 0.11.0 sklear

0 Jan 05, 2022
Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Ukrainian TTS (text-to-speech) using Coqui TTS

title emoji colorFrom colorTo sdk app_file pinned Ukrainian TTS 🐸 green green gradio app.py false Ukrainian TTS 📢 🤖 Ukrainian TTS (text-to-speech)

Yurii Paniv 85 Dec 26, 2022
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Dec 31, 2022
This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text.

Text Summarizer This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text. Team Members This mini-project was

1 Nov 16, 2021
Translation to python of Chris Sims' optimization function

pycsminwel This is a locol minimization algorithm. Uses a quasi-Newton method with BFGS update of the estimated inverse hessian. It is robust against

Gustavo Amarante 1 Mar 21, 2022
Anomaly Detection 이상치 탐지 전처리 모듈

Anomaly Detection 시계열 데이터에 대한 이상치 탐지 1. Kernel Density Estimation을 활용한 이상치 탐지 train_data_path와 test_data_path에 존재하는 시점 정보를 포함하고 있는 csv 형태의 train data와

CLUST-consortium 43 Nov 28, 2022
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective

InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective This is the official code base for our ICLR 2021 paper

AI Secure 71 Nov 25, 2022
This is the Alpha of Nutte language, she is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda

nutte-language This is the Alpha of Nutte language, it is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda My language was

catdochrome 2 Dec 18, 2021
Задания КЕГЭ по информатике 2021 на Python

КЕГЭ 2021 на Python В этом репозитории мои решения типовых заданий КЕГЭ по информатике в 2021 году, БЕСПЛАТНО! Задания Взяты с https://inf-ege.sdamgia

8 Oct 13, 2022
Multilingual word vectors in 78 languages

Aligning the fastText vectors of 78 languages Facebook recently open-sourced word vectors in 89 languages. However these vectors are monolingual; mean

Babylon Health 1.2k Dec 17, 2022
DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)

DANeS - Open-source E-newspaper dataset Source: Technology vector created by macrovector - www.freepik.com. DANeS is an open-source E-newspaper datase

DATASET .JSC 64 Aug 17, 2022
SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples

SNCSE SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples This is the repository for SNCSE. SNCSE aims to allev

Sense-GVT 59 Jan 02, 2023
This repository will contain the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 27, 2022