Code for the paper "Flexible Generation of Natural Language Deductions"

Overview

Flexible Generation of Natural Language Deductions

a.k.a. ParaPattern

https://arxiv.org/abs/2104.08825

Kaj Bostrom, Lucy Zhao, Swarat Chaudhuri, and Greg Durrett

This repository contains all the code needed to replicate the experiments from the paper, and additionally provides a set of tools to put together new natural language deduction operations from scratch.

In the data/ folder, you'll find all the data used to train and evaluate our models, already preprocessed and ready to go, with the exception of the MNLI dataset due to its size - if you want to replicate our MNLI-BART baseline, you'll need to download a copy of MNLI and run data/mnli/filter.py for yourself. The data folder also contains several generic conversion scripts, which you may find useful for processing operation training examples, as well as paraphrase.py, which does automatic paraphrase generation if you pass it a path to a suitable sequence-to-sequence paraphrasing model checkpoint, e.g. https://huggingface.co/tuner007/pegasus_paraphrase

In the modeling/ folder, you'll find the fine-tuning code needed to train operation models, as well as scripts to run all the evaluations described in the paper. Just make sure you're on transformers version 4.2.1, not the latest version, since several of the scripts are carefully built around bugs that have since been patched out of the library.

If you have access to multiple GPUs, you can change the --nproc_per_node argument in finetune.sh from 1 to whatever number of GPUs you want to use for training.

In the dep_search/ folder, you'll find tools to perform bulk dependency parsing using spaCy, as well as scripts to index the resulting stream of dependency trees and scrape them using dependency patterns. For reference, the templates used in the paper live in dep_search/templates/. If you want to write your own templates, a good place to start is playing around with the dependency pattern DSL using dep_search.struct_query.parse_query - if you're wondering how to express a given syntactic pattern, you can start by calling dep_search.struct_query.Head.from_spacy on a spaCy token; this will construct a syntactic pattern without any slots from that token's dependency subtree. Printing patterns this way is a great way to familiarize yourself with dependency structure if you need to brush up on that stuff (I can never remember what POS tag/arc label conventions spaCy uses so I was printing out a lot of these trees while I was developing the templates we used in the paper).

Unfortunately, I never got around to optimizing the syntactic search process all that well, so for large free-text corpora (~=100M sentences or more) it can take a day or two to do a full run of parsing and indexing using dep_search/scrape.py. I find a good way to iterate on a pattern is to start by casting a really broad net, and then narrow down your pattern on a subset of those results so that you don't have to re-index your whole original corpus each time you make a small change to a template.

Owner
Kaj Bostrom
PhD student at UT Austin Computer Science. Studying NLP (reading comprehension/language understanding in particular)
Kaj Bostrom
Maha is a text processing library specially developed to deal with Arabic text.

An Arabic text processing library intended for use in NLP applications Maha is a text processing library specially developed to deal with Arabic text.

Mohammad Al-Fetyani 184 Nov 27, 2022
Auto_code_complete is a auto word-completetion program which allows you to customize it on your needs

auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the model for this program is one of the deep-learning NLP(Natural Language Process) model struc

RUO 2 Feb 22, 2022
Common Voice Dataset explorer

Common Voice Dataset Explorer Common Voice Dataset is by Mozilla Made during huggingface finetuning week Usage pip install -r requirements.txt streaml

Ceyda Cinarel 22 Nov 16, 2022
Coreference resolution for English, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, msg systems ag 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 German 1.2.3 Polish 1

msg systems ag 169 Dec 21, 2022
Every Google, Azure & IBM text to speech voice for free

TTS-Grabber Quick thing i made about a year ago to download any text with any tts voice, over 630 voices to choose from currently. It will split the i

16 Dec 07, 2022
NLP tool to extract emotional phrase from tweets 🤩

Emotional phrase extractor Extract phrase in the given text that is used to express the sentiment. Capturing sentiment in language is important in the

Shahul ES 38 Oct 17, 2022
Help you discover excellent English projects and get rid of disturbing by other spoken language

GitHub English Top Charts 「Help you discover excellent English projects and get

GrowingGit 544 Jan 09, 2023
My Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks using Tensorflow

Easy Data Augmentation Implementation This repository contains my Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Per

Aflah 9 Oct 31, 2022
내부 작업용 django + vue(vuetify) boilerplate. 짠 하면 돌아감.

Pocket Galaxy 아주 간단한 개인용, 혹은 내부용 툴을 만들어야하는데 이왕이면 웹이 편하죠? 그럴때를 위해 만들어둔 django와 vue(vuetify)로 이뤄진 boilerplate 입니다. 각 폴더에 있는 설명서대로 실행을 시키면 일단 당장 뭔가가 돌아갑니

Jamie J. Seol 16 Dec 03, 2021
Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks

Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modifies the input text with a textual template and directly uses PLMs to conduct pre

THUNLP 2.3k Jan 08, 2023
GNES enables large-scale index and semantic search for text-to-text, image-to-image, video-to-video and any-to-any content form

GNES is Generic Neural Elastic Search, a cloud-native semantic search system based on deep neural network.

GNES.ai 1.2k Jan 06, 2023
Library for Russian imprecise rhymes generation

TOM RHYMER Library for Russian imprecise rhymes generation. Quick Start Generate rhymes by any given rhyme scheme (aabb, abab, aaccbb, etc ...): from

Alexey Karnachev 6 Oct 18, 2022
Unet-TTS: Improving Unseen Speaker and Style Transfer in One-shot Voice Cloning

Unet-TTS: Improving Unseen Speaker and Style Transfer in One-shot Voice Cloning English | 中文 ❗ Now we provide inferencing code and pre-training models

164 Jan 02, 2023
Negative sampling for solving the unlabeled entity problem in NER. ICLR-2021 paper: Empirical Analysis of Unlabeled Entity Problem in Named Entity Recognition.

Negative Sampling for NER Unlabeled entity problem is prevalent in many NER scenarios (e.g., weakly supervised NER). Our paper in ICLR-2021 proposes u

Yangming Li 128 Dec 29, 2022
A CRM department in a local bank works on classify their lost customers with their past datas. So they want predict with these method that average loss balance and passive duration for future.

Rule-Based-Classification-in-a-Banking-Case. A CRM department in a local bank works on classify their lost customers with their past datas. So they wa

ÖMER YILDIZ 4 Mar 20, 2022
Mastering Transformers, published by Packt

Mastering Transformers This is the code repository for Mastering Transformers, published by Packt. Build state-of-the-art models from scratch with adv

Packt 195 Jan 01, 2023
Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memories using approximate nearest neighbors, in Pytorch

Memorizing Transformers - Pytorch Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memori

Phil Wang 364 Jan 06, 2023
Gathers machine learning and Tensorflow deep learning models for NLP problems, 1.13 < Tensorflow < 2.0

NLP-Models-Tensorflow, Gathers machine learning and tensorflow deep learning models for NLP problems, code simplify inside Jupyter Notebooks 100%. Tab

HUSEIN ZOLKEPLI 1.7k Dec 30, 2022
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022