Transformers-regression - Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing Regressions In NLP Model Updates

Overview

Regression Free Model Update

Code for the paper: Regression Bugs Are In Your Model! Measuring, Reducing and Analyzing Regressions In NLP Model Updates [Paper]

Modified from the Hugging Face Transformers examples of text-classification. [Original code]

Haven't tested under this environment, and document needs completion.

If you have any question, please contact me through email:[email protected]

Text classification examples

GLUE tasks

Based on the script run_glue.py.

Fine-tuning the library models for sequence classification on the GLUE benchmark: General Language Understanding Evaluation. This script can fine-tune any of the models on the hub and can also be used for a dataset hosted on our hub or your own data in a csv or a JSON file (the script might need some tweaks in that case, refer to the comments inside for help).

GLUE is made up of a total of 9 different tasks. Here is how to run the script on one of them:

export TASK_NAME=mrpc

python run_glue.py \
  --model_name_or_path bert-base-cased \
  --task_name $TASK_NAME \
  --do_train \
  --do_eval \
  --max_seq_length 128 \
  --per_device_train_batch_size 32 \
  --learning_rate 2e-5 \
  --num_train_epochs 3 \
  --output_dir /tmp/$TASK_NAME/

where task name can be one of cola, sst2, mrpc, stsb, qqp, mnli, qnli, rte, wnli.

We get the following results on the dev set of the benchmark with the previous commands (with an exception for MRPC and WNLI which are tiny and where we used 5 epochs instead of 3). Trainings are seeded so you should obtain the same results with PyTorch 1.6.0 (and close results with different versions), training times are given for information (a single Titan RTX was used):

Task Metric Result Training time
CoLA Matthews corr 56.53 3:17
SST-2 Accuracy 92.32 26:06
MRPC F1/Accuracy 88.85/84.07 2:21
STS-B Pearson/Spearman corr. 88.64/88.48 2:13
QQP Accuracy/F1 90.71/87.49 2:22:26
MNLI Matched acc./Mismatched acc. 83.91/84.10 2:35:23
QNLI Accuracy 90.66 40:57
RTE Accuracy 65.70 57
WNLI Accuracy 56.34 24

Some of these results are significantly different from the ones reported on the test set of GLUE benchmark on the website. For QQP and WNLI, please refer to FAQ #12 on the website.

The following example fine-tunes BERT on the imdb dataset hosted on our hub:

python run_glue.py \
  --model_name_or_path bert-base-cased \
  --dataset_name imdb  \
  --do_train \
  --do_predict \
  --max_seq_length 128 \
  --per_device_train_batch_size 32 \
  --learning_rate 2e-5 \
  --num_train_epochs 3 \
  --output_dir /tmp/imdb/

Mixed precision training

If you have a GPU with mixed precision capabilities (architecture Pascal or more recent), you can use mixed precision training with PyTorch 1.6.0 or latest, or by installing the Apex library for previous versions. Just add the flag --fp16 to your command launching one of the scripts mentioned above!

Using mixed precision training usually results in 2x-speedup for training with the same final results:

Task Metric Result Training time Result (FP16) Training time (FP16)
CoLA Matthews corr 56.53 3:17 56.78 1:41
SST-2 Accuracy 92.32 26:06 91.74 13:11
MRPC F1/Accuracy 88.85/84.07 2:21 88.12/83.58 1:10
STS-B Pearson/Spearman corr. 88.64/88.48 2:13 88.71/88.55 1:08
QQP Accuracy/F1 90.71/87.49 2:22:26 90.67/87.43 1:11:54
MNLI Matched acc./Mismatched acc. 83.91/84.10 2:35:23 84.04/84.06 1:17:06
QNLI Accuracy 90.66 40:57 90.96 20:16
RTE Accuracy 65.70 57 65.34 29
WNLI Accuracy 56.34 24 56.34 12

PyTorch version, no Trainer

Based on the script run_glue_no_trainer.py.

Like run_glue.py, this script allows you to fine-tune any of the models on the hub on a text classification task, either a GLUE task or your own data in a csv or a JSON file. The main difference is that this script exposes the bare training loop, to allow you to quickly experiment and add any customization you would like.

It offers less options than the script with Trainer (for instance you can easily change the options for the optimizer or the dataloaders directly in the script) but still run in a distributed setup, on TPU and supports mixed precision by the mean of the 🤗 Accelerate library. You can use the script normally after installing it:

pip install accelerate

then

export TASK_NAME=mrpc

python run_glue_no_trainer.py \
  --model_name_or_path bert-base-cased \
  --task_name $TASK_NAME \
  --max_length 128 \
  --per_device_train_batch_size 32 \
  --learning_rate 2e-5 \
  --num_train_epochs 3 \
  --output_dir /tmp/$TASK_NAME/

You can then use your usual launchers to run in it in a distributed environment, but the easiest way is to run

accelerate config

and reply to the questions asked. Then

accelerate test

that will check everything is ready for training. Finally, you can launch training with

export TASK_NAME=mrpc

accelerate launch run_glue_no_trainer.py \
  --model_name_or_path bert-base-cased \
  --task_name $TASK_NAME \
  --max_length 128 \
  --per_device_train_batch_size 32 \
  --learning_rate 2e-5 \
  --num_train_epochs 3 \
  --output_dir /tmp/$TASK_NAME/

This command is the same and will work for:

  • a CPU-only setup
  • a setup with one GPU
  • a distributed training with several GPUs (single or multi node)
  • a training on TPUs

Note that this library is in alpha release so your feedback is more than welcome if you encounter any problem using it.

Owner
Yuqing Xie
Yuqing Xie
Twitter-Sentiment-Analysis - Analysis of twitter posts' positive and negative score.

Twitter-Sentiment-Analysis The hands-on project is in Python 3 Programming class offered by University of Michigan via Coursera. The task is to build

Eszter Pai 1 Jan 03, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
leaking paid token generator that was a shit lmao for 100$ haha

Discord-Token-Generator-Leaked leaking paid token generator that was a shit lmao for 100$ he selling it for 100$ wth here the code enjoy don't forget

Keevo 5 Apr 15, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 881 Jan 03, 2023
Python package for Turkish Language.

PyTurkce Python package for Turkish Language. Documentation: https://pyturkce.readthedocs.io. Installation pip install pyturkce Usage from pyturkce im

Mert Cobanov 14 Oct 09, 2022
:P Some basic stuff I'm gonna use for my upcoming Agile Software Development and Devops

reverse-image-search-py bash script.sh img_name.jpg Requirements pip install requests pip install pyshorteners Dry run [ Sudhanva M 3 Dec 18, 2021

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing pororo performs Natural Language Processing and Speech-related tasks. It is easy to

Kakao Brain 1.2k Dec 21, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le

84 Dec 15, 2022
:id: A python library for accurate and scalable fuzzy matching, record deduplication and entity-resolution.

Dedupe Python Library dedupe is a python library that uses machine learning to perform fuzzy matching, deduplication and entity resolution quickly on

Dedupe.io 3.6k Jan 02, 2023
Russian words synonyms and antonyms

ru_synonyms Russian words synonyms and antonyms. Install pip install git+https://github.com/ahmados/rusynonyms.git Usage from ru_synonyms import Anto

sumekenov 7 Dec 14, 2022
Graph Coloring - Weighted Vertex Coloring Problem

Graph Coloring - Weighted Vertex Coloring Problem This project proposes several local searches and an MCTS algorithm for the weighted vertex coloring

Cyril 1 Jul 08, 2022
Plugin repository for Macast

Macast-plugins Plugin repository for Macast. How to use third-party player plugin Download Macast from GitHub Release. Download the plugin you want fr

109 Jan 04, 2023
Code to reproduce the results of the paper 'Towards Realistic Few-Shot Relation Extraction' (EMNLP 2021)

Realistic Few-Shot Relation Extraction This repository contains code to reproduce the results in the paper "Towards Realistic Few-Shot Relation Extrac

Bloomberg 8 Nov 09, 2022
LCG T-TEST USING EUCLIDEAN METHOD

This project has been created for statistical usage, purposing for determining ATL takers and nontakers using LCG ttest and Euclidean Method, especially for internal business case in Telkomsel.

2 Jan 21, 2022
Pangu-Alpha for Transformers

Pangu-Alpha for Transformers Usage Download MindSpore FP32 weights for GPU from here to data/Pangu-alpha_2.6B.ckpt Activate MindSpore environment and

One 5 Oct 01, 2022
AI and Machine Learning workflows on Anthos Bare Metal.

Hybrid and Sovereign AI on Anthos Bare Metal Table of Contents Overview Terraform as IaC Substrate ABM Cluster on GCE using Terraform TensorFlow ResNe

Google Cloud Platform 8 Nov 26, 2022
Transformer Based Korean Sentence Spacing Corrector

TKOrrector Transformer Based Korean Sentence Spacing Corrector License Summary This solution is made available under Apache 2 license. See the LICENSE

Paul Hyung Yuel Kim 3 Apr 18, 2022
🗣️ NALP is a library that covers Natural Adversarial Language Processing.

NALP: Natural Adversarial Language Processing Welcome to NALP. Have you ever wanted to create natural text from raw sources? If yes, NALP is for you!

Gustavo Rosa 21 Aug 12, 2022
Code for the Python code smells video on the ArjanCodes channel.

7 Python code smells This repository contains the code for the Python code smells video on the ArjanCodes channel (watch the video here). The example

55 Dec 29, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Meta Research 6.4k Jan 08, 2023