A method to generate speech across multiple speakers

Related tags

Text Data & NLPloop
Overview

VoiceLoop

PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop is a neural text-to-speech (TTS) that is able to transform text to speech in voices that are sampled in the wild. Some demo samples can be found here.

Quick Links

Quick Start

Follow the instructions in Setup and then simply execute:

python generate.py  --npz data/vctk/numpy_features_valid/p318_212.npz --spkr 13 --checkpoint models/vctk/bestmodel.pth

Results will be placed in models/vctk/results. It will generate 2 samples:

You can also generate the same text but with a different speaker, specifically:

python generate.py  --npz data/vctk/numpy_features_valid/p318_212.npz --spkr 18 --checkpoint models/vctk/bestmodel.pth

Which will generate the following sample.

Here is the corresponding attention plot:

Legend: X-axis is output time (acoustic samples) Y-axis is input (text/phonemes). Left figure is speaker 10, right is speaker 14.

Finally, free text is also supported:

python generate.py  --text "hello world" --spkr 1 --checkpoint models/vctk/bestmodel.pth

Setup

Requirements: Linux/OSX, Python2.7 and PyTorch 0.1.12. Generation requires installing phonemizer, follow the setup instructions there. The current version of the code requires CUDA support for training. Generation can be done on the CPU.

git clone https://github.com/facebookresearch/loop.git
cd loop
pip install -r scripts/requirements.txt

Data

The data used to train the models in the paper can be downloaded via:

bash scripts/download_data.sh

The script downloads and preprocesses a subset of VCTK. This subset contains speakers with american accent.

The dataset was preprocessed using Merlin - from each audio clip we extracted vocoder features using the WORLD vocoder. After downloading, the dataset will be located under subfolder data as follows:

loop
├── data
    └── vctk
        ├── norm_info
        │   ├── norm.dat
        ├── numpy_feautres
        │   ├── p294_001.npz
        │   ├── p294_002.npz
        │   └── ...
        └── numpy_features_valid

The preprocess pipeline can be executed using the following script by Kyle Kastner: https://gist.github.com/kastnerkyle/cc0ac48d34860c5bb3f9112f4d9a0300.

Pretrained Models

Pretrainde models can be downloaded via:

bash scripts/download_models.sh

After downloading, the models will be located under subfolder models as follows:

loop
├── data
├── models
    ├── blizzard
    ├── vctk
    │   ├── args.pth
    │   └── bestmodel.pth
    └── vctk_alt

Update 10/25/2017: Single speaker model available in models/blizzard/

SPTK and WORLD

Finally, speech generation requires SPTK3.9 and WORLD vocoder as done in Merlin. To download the executables:

bash scripts/download_tools.sh

Which results the following sub directories:

loop
├── data
├── models
├── tools
    ├── SPTK-3.9
    └── WORLD

Training

Single-Speaker

Single speaker model is trained on blizzard 2011. Data should be downloaded and prepared as described above. Once the data is ready, run:

python train.py --noise 1 --expName blizzard_init --seq-len 1600 --max-seq-len 1600 --data data/blizzard --nspk 1 --lr 1e-5 --epochs 10

Then, continue training the model with :

python train.py --noise 1 --expName blizzard --seq-len 1600 --max-seq-len 1600 --data data/blizzard --nspk 1 --lr 1e-4 --checkpoint checkpoints/blizzard_init/bestmodel.pth --epochs 90

Multi-Speaker

Training a new model on vctk, first train the model using noise level of 4 and input sequence length of 100:

python train.py --expName vctk --data data/vctk --noise 4 --seq-len 100 --epochs 90

Then, continue training the model using noise level of 2, on full sequences:

python train.py --expName vctk_noise_2 --data data/vctk --checkpoint checkpoints/vctk/bestmodel.pth --noise 2 --seq-len 1000 --epochs 90

Citation

If you find this code useful in your research then please cite:

@article{taigman2017voice,
  title           = {VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop},
  author          = {Taigman, Yaniv and Wolf, Lior and Polyak, Adam and Nachmani, Eliya},
  journal         = {ArXiv e-prints},
  archivePrefix   = "arXiv",
  eprinttype      = {arxiv},
  eprint          = {1705.03122},
  primaryClass    = "cs.CL",
  year            = {2017}
  month           = October,
}

License

Loop has a CC-BY-NC license.

Owner
Facebook Archive
These projects have been archived and are generally unsupported, but are still available to view and use
Facebook Archive
Opal-lang - A WIP programming language based on Python

thanks to aphitorite for the beautiful logo! opal opal is a WIP transcompiled pr

3 Nov 04, 2022
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.

keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea

Gagan Bhatia 364 Jan 03, 2023
Text-to-Speech for Belarusian language

title emoji colorFrom colorTo sdk app_file pinned Belarusian TTS 🐸 green green gradio app.py false Belarusian TTS 📢 🤖 Belarusian TTS (text-to-speec

Yurii Paniv 1 Nov 27, 2021
pkuseg多领域中文分词工具; The pkuseg toolkit for multi-domain Chinese word segmentation

pkuseg:一个多领域中文分词工具包 (English Version) pkuseg 是基于论文[Luo et. al, 2019]的工具包。其简单易用,支持细分领域分词,有效提升了分词准确度。 目录 主要亮点 编译和安装 各类分词工具包的性能对比 使用方式 论文引用 作者 常见问题及解答 主要

LancoPKU 6k Dec 29, 2022
Transformers and related deep network architectures are summarized and implemented here.

Transformers: from NLP to CV This is a practical introduction to Transformers from Natural Language Processing (NLP) to Computer Vision (CV) Introduct

Ibrahim Sobh 138 Dec 27, 2022
This code is the implementation of Text Emotion Recognition (TER) with linguistic features

APSIPA-TER This code is the implementation of Text Emotion Recognition (TER) with linguistic features. The network model is BERT with a pretrained mod

kenro515 1 Feb 08, 2022
Understanding the Difficulty of Training Transformers

Admin Understanding the Difficulty of Training Transformers Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successful

Liyuan Liu 300 Dec 29, 2022
Perform sentiment analysis on textual data that people generally post on websites like social networks and movie review sites.

Sentiment Analyzer The goal of this project is to perform sentiment analysis on textual data that people generally post on websites like social networ

Madhusudan.C.S 53 Mar 01, 2022
Neural text generators like the GPT models promise a general-purpose means of manipulating texts.

Boolean Prompting for Neural Text Generators Neural text generators like the GPT models promise a general-purpose means of manipulating texts. These m

Jeffrey M. Binder 20 Jan 09, 2023
:id: A python library for accurate and scalable fuzzy matching, record deduplication and entity-resolution.

Dedupe Python Library dedupe is a python library that uses machine learning to perform fuzzy matching, deduplication and entity resolution quickly on

Dedupe.io 3.6k Jan 02, 2023
pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks

A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

297 Dec 29, 2022
A relatively simple python program to generate one of those reddit text to speech videos dominating youtube.

Reddit text to speech generator A basic reddit tts video generator Current functionality Generate videos for subs based on comments,(askreddit) so rea

Aadvik 17 Dec 19, 2022
Japanese Long-Unit-Word Tokenizer with RemBertTokenizerFast of Transformers

Japanese-LUW-Tokenizer Japanese Long-Unit-Word (国語研長単位) Tokenizer for Transformers based on 青空文庫 Basic Usage from transformers import RemBertToken

Koichi Yasuoka 3 Dec 22, 2021
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data

Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data Authors: Yi-Chang Chen, Yu-Chuan Chang, Yen-Cheng Chang and Yi-Ren Ye

Yi-Chang Chen 5 Dec 15, 2022
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.

Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da

Jeff Johannsen 3 Nov 27, 2022
GNES enables large-scale index and semantic search for text-to-text, image-to-image, video-to-video and any-to-any content form

GNES is Generic Neural Elastic Search, a cloud-native semantic search system based on deep neural network.

GNES.ai 1.2k Jan 06, 2023
LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language

LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language ⚖️ The library of Natural Language Processing for Brazilian legal lang

Felipe Maia Polo 125 Dec 20, 2022
A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

GuwenModels: 古文自然语言处理模型合集, 收录互联网上的古文相关模型及资源. A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

Ethan 66 Dec 26, 2022
PRAnCER is a web platform that enables the rapid annotation of medical terms within clinical notes.

PRAnCER (Platform enabling Rapid Annotation for Clinical Entity Recognition) is a web platform that enables the rapid annotation of medical terms within clinical notes. A user can highlight spans of

Sontag Lab 39 Nov 14, 2022