chaii - hindi & tamil question answering

Overview

chaii - hindi & tamil question answering

This is the solution for rank 5th in Kaggle competition: chaii - Hindi and Tamil Question Answering. The competition can be found here: https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering

Datasets required

Download squadv2 data from https://rajpurkar.github.io/SQuAD-explorer/

$ mkdir input && cd input
$ wget https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json
$ wget https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json

Download tydiqa data in the input folder:

$ wget https://storage.googleapis.com/tydiqa/v1.1/tydiqa-goldp-v1.1-train.json
$ wget https://storage.googleapis.com/tydiqa/v1.1/tydiqa-goldp-v1.1-dev.json

Download data from https://www.kaggle.com/tkm2261/google-translated-squad20-to-hindi-and-tamil to input folder

Download original competition dataset to input folder: https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering/data

Download outputs of this kernel: https://www.kaggle.com/rhtsingh/external-data-mlqa-xquad-preprocessing/ to input folder

Now, you have all the data needed to train the model. We will first create folds and munge the data a bit.

To create folds, please use the following command:

$ cd src
$ python create_folds.py

To munge the datasets and prepare for training, please run the following command:

$ cd src
$ python munge_data.py

Training

There are two GPU models and one model needs TPUs.

GPU models: XLM-Roberta & Rembert TPU model: Muril-Large

XLM-Roberta:

$ cd src
$ TOKENIZERS_PARALLELISM=false python xlm_roberta.py --fold 0
$ TOKENIZERS_PARALLELISM=false python xlm_roberta.py --fold 1
$ TOKENIZERS_PARALLELISM=false python xlm_roberta.py --fold 2
$ TOKENIZERS_PARALLELISM=false python xlm_roberta.py --fold 3
$ TOKENIZERS_PARALLELISM=false python xlm_roberta.py --fold 4

Rembert:

$ cd src
$ TOKENIZERS_PARALLELISM=false python rembert.py --fold 0
$ TOKENIZERS_PARALLELISM=false python rembert.py --fold 1
$ TOKENIZERS_PARALLELISM=false python rembert.py --fold 2
$ TOKENIZERS_PARALLELISM=false python rembert.py --fold 3
$ TOKENIZERS_PARALLELISM=false python rembert.py --fold 4

Muril-Large

** please note that training this model needs TPUs **

$ cd src
$ TOKENIZERS_PARALLELISM=false python muril_large.py --fold 0
$ TOKENIZERS_PARALLELISM=false python muril_large.py --fold 1
$ TOKENIZERS_PARALLELISM=false python muril_large.py --fold 2
$ TOKENIZERS_PARALLELISM=false python muril_large.py --fold 3
$ TOKENIZERS_PARALLELISM=false python muril_large.py --fold 4

Inference

After training all the models, the outputs were pushed to Kaggle Datasets.

The final model datasets can be found here:

- https://www.kaggle.com/abhishek/xlmrobertalargewithsquadv2tydiqasqdtrans384f
- https://www.kaggle.com/ubamba98/modelsrembertwithsquadv2tydiqa384
- https://www.kaggle.com/ubamba98/murillargecasedchaii

And the final inference kernel can be found here: https://www.kaggle.com/abhishek/chaii-xlm-roberta-x-muril-x-rembert-score-based

Solution writeup: https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering/discussion/288049

Owner
abhishek thakur
Kaggle: www.kaggle.com/abhishek
abhishek thakur
ChessCoach is a neural network-based chess engine capable of natural-language commentary.

ChessCoach is a neural network-based chess engine capable of natural-language commentary.

Chris Butner 380 Dec 03, 2022
Pre-Training with Whole Word Masking for Chinese BERT

Pre-Training with Whole Word Masking for Chinese BERT

Yiming Cui 7.7k Dec 31, 2022
DeepPavlov Tutorials

DeepPavlov tutorials DeepPavlov: Sentence Classification with Word Embeddings DeepPavlov: Transfer Learning with BERT. Classification, Tagging, QA, Ze

Neural Networks and Deep Learning lab, MIPT 28 Sep 13, 2022
The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models

Graformer The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models Graformer (also named BridgeTransformer in t

22 Dec 14, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 04, 2023
Proquabet - Convert your prose into proquints and then you essentially have Vogon poetry

Proquabet Turn your prose into a constant stream of encrypted and meaningless-so

Milo Fultz 2 Oct 10, 2022
Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing 🎉 🎉 🎉 We released the 2.0.0 version with TF2 Support. 🎉 🎉 🎉 If you

Eliyar Eziz 2.3k Dec 29, 2022
An extension for asreview implements a version of the tf-idf feature extractor that saves the matrix and the vocabulary.

Extension - matrix and vocabulary extractor for TF-IDF and Doc2Vec An extension for ASReview that adds a tf-idf extractor that saves the matrix and th

ASReview 4 Jun 17, 2022
The FinQA dataset from paper: FinQA: A Dataset of Numerical Reasoning over Financial Data

Data and code for EMNLP 2021 paper "FinQA: A Dataset of Numerical Reasoning over Financial Data"

Zhiyu Chen 114 Dec 29, 2022
🗣️ NALP is a library that covers Natural Adversarial Language Processing.

NALP: Natural Adversarial Language Processing Welcome to NALP. Have you ever wanted to create natural text from raw sources? If yes, NALP is for you!

Gustavo Rosa 21 Aug 12, 2022
Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"

T5: Text-To-Text Transfer Transformer The t5 library serves primarily as code for reproducing the experiments in Exploring the Limits of Transfer Lear

Google Research 4.6k Jan 01, 2023
Application to help find best train itinerary, uses speech to text, has a spam filter to segregate invalid inputs, NLP and Pathfinding algos.

T-IAI-901-MSC2022 - GROUP 18 Gestion de projet Notre travail a été organisé et réparti dans un Trello. https://trello.com/b/X3s2fpPJ/ia-projet Install

1 Feb 05, 2022
Large-scale pretraining for dialogue

A State-of-the-Art Large-scale Pretrained Response Generation Model (DialoGPT) This repository contains the source code and trained model for a large-

Microsoft 1.8k Jan 07, 2023
Code for the project carried out fulfilling the course requirements for Fall 2021 NLP at NYU

Introduction Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization,

Sai Himal Allu 1 Apr 25, 2022
A benchmark for evaluation and comparison of various NLP tasks in Persian language.

Persian NLP Benchmark The repository aims to track existing natural language processing models and evaluate their performance on well-known datasets.

Mofid AI 68 Dec 19, 2022
PyTorch code for EMNLP 2019 paper "LXMERT: Learning Cross-Modality Encoder Representations from Transformers".

LXMERT: Learning Cross-Modality Encoder Representations from Transformers Our servers break again :(. I have updated the links so that they should wor

Hao Tan 838 Dec 19, 2022
apple's universal binaries BUT MUCH WORSE (PRACTICAL SHITPOST) (NOT PRODUCTION READY)

hyperuniversality investment opportunity: what if we could run multiple architectures in a single file, again apple universal binaries, but worse how

luna 2 Oct 19, 2021
Translation for Trilium Notes. Trilium Notes 中文版.

Trilium Translation 中文说明 This repo provides a translation for the awesome Trilium Notes. Currently, I have translated Trilium Notes into Chinese. Test

743 Jan 08, 2023
An A-SOUL Text Generator Based on CPM-Distill.

ASOUL-Generator-Backend 本项目为 https://asoul.infedg.xyz/ 的后端。 模型为基于 CPM-Distill 的 transformers 转化版本 CPM-Generate-distill 训练而成。

infinityedge 46 Dec 11, 2022
PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)

Feature_CRF_AE Feature_CRF_AE provides a implementation of Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging

Jacob Zhou 6 Apr 29, 2022