Community and sentiment analysis based on tweets

Overview

Social Media Analytics project

Community and sentiment analysis based on tweets

The project has set itself the goal of analyzing the thoughts and interaction of Italian users through the social posts expressed through the Twitter platform on the day of the entry into force of the new measures. In particular, we want to research the reference hubs present on the network, but also the sentiment and emotions of peoples with respect to the new limitations.

Motivation

One of the hottest topics in Italy in the last months of 2021 concerns the introduction of the Super Green Pass to access indoor clubs, events, gyms, etc. This security measure entered into force on 6 December 2021 and in fact no longer allows access to various services to those who have not completed the vaccination cycle. For these reasons it was decided, for the development of the project, to analyze the impressions of the Italian Twitter community regarding the Super Green Pass, with the aim of understanding who are the users who write and interact on the platform and if there are specific communities among the users who have commented on the introduction of this extension. We also want to analyze the possible influencing nodes of the network and verify the sentiment around them.

Data

The data was collected by Twitter using their API and Tweepy python package. All tweets were written on December 6th in italian languages.
In data folder you can find the .csv file with all the collected tweet (here), and you can also find two extras files that contains the sentiment extracted for each tweet (here) and the aggregated sentiment per cluster (here).

Files

All the developed code is present in the file Code.ipynb. You can also find the report and presentation made for the exam. Both in italian language.

How to run code?

We advise you to run all the code in Google Colaboratory platform. All notebooks all already setted to import the necessary packages! If you have any doubt please feel free to contact me!

Graph visualization

In Pyvis_export folder you can find two exported interactive visualization of the network graph. You can also find a static version of the images in .jpg files if you want to see them quickly (html version is quite slow at opening).

Results

We have found that hubs are not famous people, this may be an expected result due to the particular context of the no-vax discussion. In this context, the ideas and contents are more important than the celebrity of the person.
Focusing on sentiment analysis we noticed that the vast majority of tweets are neutral or negative! This is a far cry from the reality where most people have been vaccinated and are not that disappointed with the new rules.

About us

Riccardo Confalonieri - Data Science Student @ University of Milano-Bicocca

Justin Armanini - Data Science Student @ University of Milano-Bicocca

Chiara Cormio - Data Science Student @ University of Milano-Bicocca

Owner
Computer Science Bachelor @ Università degli Studi Milano Bicocca. DataScience Student @ Università degli Studi Milano Bicocca.
SGMC: Spectral Graph Matrix Completion

SGMC: Spectral Graph Matrix Completion Code for AAAI21 paper "Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning". Data Format

Chao Chen 8 Dec 12, 2022
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.data: Generic data loaders, abstractions, and iterators for text (including vocabulary and word vecto

3.2k Dec 30, 2022
Conversational-AI-ChatBot - Intelligent ChatBot built with Microsoft's DialoGPT transformer to make conversations with human users!

Conversational AI ChatBot Intelligent ChatBot built with Microsoft's DialoGPT transformer to make conversations with human users! In this project? Thi

Rajkumar Lakshmanamoorthy 6 Nov 30, 2022
Text Classification Using LSTM

Text classification is the task of assigning a set of predefined categories to free text. Text classifiers can be used to organize, structure, and categorize pretty much anything. For example, new ar

KrishArul26 3 Jan 03, 2023
Some embedding layer implementation using ivy library

ivy-manual-embeddings Some embedding layer implementation using ivy library. Just for fun. It is based on NYCTaxiFare dataset from kaggle (cut down to

Ishtiaq Hussain 2 Feb 10, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Udit Arora 19 Oct 28, 2022
Text classification on IMDB dataset using Keras and Bi-LSTM network

Text classification on IMDB dataset using Keras and Bi-LSTM Text classification on IMDB dataset using Keras and Bi-LSTM network. Usage python3 main.py

Hamza Rashid 2 Sep 27, 2022
Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP This repository maintains some utility scripts for retrieving and preprocessing Wikipedia text

Masatoshi Suzuki 44 Oct 19, 2022
Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Tokenizer Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code e

Manolo 1 Aug 15, 2022
pyMorfologik MorfologikpyMorfologik - Python binding for Morfologik.

Python binding for Morfologik Morfologik is Polish morphological analyzer. For more information see http://github.com/morfologik/morfologik-stemming/

Damian Mirecki 18 Dec 29, 2021
Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together

SpeechMix Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together. Introduction For the same input: from datas

Eric Lam 31 Nov 07, 2022
CoSENT 比Sentence-BERT更有效的句向量方案

CoSENT 比Sentence-BERT更有效的句向量方案

苏剑林(Jianlin Su) 201 Dec 12, 2022
Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization 📥 Download Datasets 📥 Download Trained Models INTRODUCTION TH2ZH (

Nakhun Chumpolsathien 5 Jan 03, 2022
FewCLUE: 为中文NLP定制的小样本学习测评基准

FewCLUE: 为中文NLP定制的小样本学习测评基准

CLUE benchmark 387 Jan 04, 2023
In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Making Emojis More Predictable by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad

Karanjot Singh 2 Jan 17, 2022
A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

NEC Laboratories Europe 13 Sep 08, 2022
This project aims to conduct a text information retrieval and text mining on medical research publication regarding Covid19 - treatments and vaccinations.

Project: Text Analysis - This project aims to conduct a text information retrieval and text mining on medical research publication regarding Covid19 -

1 Mar 14, 2022
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI

data2vec-pytorch PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI (F

Aryan Shekarlaban 105 Jan 04, 2023