Use Tensorflow2.7.0 Build OpenAI'GPT-2

Overview

TF2_GPT-2

Use Tensorflow2.7.0 Build OpenAI'GPT-2 使用最新tensorflow2.7.0构建openai官方的GPT-2 NLP模型

优点

  • 使用无监督技术
  • 拥有大量词汇量
  • 可实现续写(堪比“xx梦续写”)
  • 实现对话后续将应用于FloatTech的Bot

食用方法

Setting

  • python >= 3.6
  • numpy==1.16.4
  • sentencepiece==0.1.83
  • tensorflow-gpu==2.7.0

Steps

1. git clone https://github.com/Xhs753/TF2_GPT-2
2. $ cd TF2_GPT-2
3. $ pip install -r requirments.txt

  • 你可以使用词仓库提供的sample.py示例数据预训练模型 ##### 对仓库的可用数据进行训练模型
$ pyton pre_process.py --help

可选项:
  --data-dir TEXT        训练数据路径  [默认: /data/scraped]
  --vocab-size INTEGER   词汇大小和字节大小  [默认: 24512]
  --min-seq-len INTEGER  最小词序长度  [默认: 15]
  --max-seq-len INTEGER  最大词序sequence长度  [默认: 512]
  --help                 显示所有信息并退出
  
  
 ==>>python pre_process.py

在任意数据上训练
>> python pre_process.py --data-dir=data_directory --vocab-size=32000

  • 有关模型的命令源码在此
@click.command()
@click.option('--num-layers', type=int, default=8, show_default=True, help="No. of decoder layers")
@click.option('--embedding-size', type=int, default=768, show_default=True, help="Embedding size")
@click.option('--num-heads', type=int, default=8, show_default=True, help="Number of heads")
@click.option('--dff', type=int, default=3072, show_default=True, help="Filter Size")
@click.option('--max-seq-len', type=int, default=515, show_default=True, help="Seq length")
@click.option('--vocab-size', type=int, default=24512, show_default=True, help="Vocab size")
@click.option('--optimizer', type=str, default="adam", show_default=True, help="optimizer type")
@click.option('--batch-size', type=int, default=8, show_default=True, help="optimizer type")
@click.option('--learning-rate', type=float, default=0.001, show_default=True, help="learning rate")
@click.option('--graph-mode', type=bool, default=False, show_default=False, help="TF run mode")
@click.option('--distributed', type=bool, default=False, show_default=False, help="distributed training")

####### 使用GPT-2

>> python train_gpt2.py \
  --num-layers=8 \
  --num-heads=8 \
  --dff=3072 \
  --embedding-size=768 \
  --batch-size=32 \
  --learning-rate=5e-5
  --graph-mode=True


模型架构

/image

Link

Thanks To My Friends

LICENCE

You might also like...
Named-entity recognition using neural networks. Easy-to-use and state-of-the-art results.

NeuroNER NeuroNER is a program that performs named-entity recognition (NER). Website: neuroner.com. This page gives step-by-step instructions to insta

When doing audio and video sentiment recognition, I found that a lot of code is duplicated, often a function in different time debugging for a long time, based on this problem, I want to manage all the previous work, organized into an open source library can be iterative. For their own use and others.
Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

🛸 Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy

spacy-transformers: Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy This package provides spaCy components and architectures to use tr

Named-entity recognition using neural networks. Easy-to-use and state-of-the-art results.

NeuroNER NeuroNER is a program that performs named-entity recognition (NER). Website: neuroner.com. This page gives step-by-step instructions to insta

🛸 Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy

spacy-transformers: Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy This package provides spaCy components and architectures to use tr

Named-entity recognition using neural networks. Easy-to-use and state-of-the-art results.

NeuroNER NeuroNER is a program that performs named-entity recognition (NER). Website: neuroner.com. This page gives step-by-step instructions to insta

Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

A collection of Korean Text Datasets ready to use using Tensorflow-Datasets.

tfds-korean A collection of Korean Text Datasets ready to use using Tensorflow-Datasets. TensorFlow-Datasets를 이용한 한국어/한글 데이터셋 모음입니다. Dataset Catalog |

Releases(GPT-2)
Owner
Watermelon
(-^〇^-) A cute watermelon 🍉
Watermelon
Code for using and evaluating SpanBERT.

SpanBERT This repository contains code and models for the paper: SpanBERT: Improving Pre-training by Representing and Predicting Spans. If you prefer

Meta Research 798 Dec 30, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
Turkish Stop Words Türkçe Dolgu Sözcükleri

trstop Turkish Stop Words Türkçe Dolgu Sözcükleri In this repository I put Turkish stop words that is contained in the first 10 thousand words with th

Ahmet Aksoy 103 Nov 12, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

9 Jan 08, 2023
The FinQA dataset from paper: FinQA: A Dataset of Numerical Reasoning over Financial Data

Data and code for EMNLP 2021 paper "FinQA: A Dataset of Numerical Reasoning over Financial Data"

Zhiyu Chen 114 Dec 29, 2022
Utilize Korean BERT model in sentence-transformers library

ko-sentence-transformers 이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-trans

Junghyun 40 Dec 20, 2022
Beautiful visualizations of how language differs among document types.

Scattertext 0.1.0.0 A tool for finding distinguishing terms in corpora and displaying them in an interactive HTML scatter plot. Points corresponding t

Jason S. Kessler 2k Dec 27, 2022
A 10000+ hours dataset for Chinese speech recognition

A 10000+ hours dataset for Chinese speech recognition

309 Dec 16, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Azure Text-to-speech service for Home Assistant

Azure Text-to-speech service for Home Assistant The Azure text-to-speech platform uses online Azure Text-to-Speech cognitive service to read a text wi

Yassine Selmi 2 Aug 06, 2022
Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents

Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents [Project Page] [Paper] [Video] Wenlong Huang1, Pieter Abbee

Wenlong Huang 114 Dec 29, 2022
Text Analysis & Topic Extraction on Android App user reviews

AndroidApp_TextAnalysis Hi, there! This is code archive for Text Analysis and Topic Extraction from user_reviews of Android App. Dataset Source : http

Fitrie Ratnasari 1 Feb 14, 2022
SGMC: Spectral Graph Matrix Completion

SGMC: Spectral Graph Matrix Completion Code for AAAI21 paper "Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning". Data Format

Chao Chen 8 Dec 12, 2022
Weakly-supervised Text Classification Based on Keyword Graph

Weakly-supervised Text Classification Based on Keyword Graph How to run? Download data Our dataset follows previous works. For long texts, we follow C

Hello_World 20 Dec 29, 2022
Framework for fine-tuning pretrained transformers for Named-Entity Recognition (NER) tasks

NERDA Not only is NERDA a mesmerizing muppet-like character. NERDA is also a python package, that offers a slick easy-to-use interface for fine-tuning

Ekstra Bladet 141 Dec 30, 2022
Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger

Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger In this project, our aim is to tune, compare, and contrast the perf

Chirag Daryani 0 Dec 25, 2021
Code for Editing Factual Knowledge in Language Models

KnowledgeEditor Code for Editing Factual Knowledge in Language Models (https://arxiv.org/abs/2104.08164). @inproceedings{decao2021editing, title={Ed

Nicola De Cao 86 Nov 28, 2022
Utilities for preprocessing text for deep learning with Keras

Note: This utility is really old and is no longer maintained. You should use keras.layers.TextVectorization instead of this. Utilities for pre-process

Hamel Husain 180 Dec 09, 2022
Galois is an auto code completer for code editors (or any text editor) based on OpenAI GPT-2.

Galois is an auto code completer for code editors (or any text editor) based on OpenAI GPT-2. It is trained (finetuned) on a curated list of approximately 45K Python (~470MB) files gathered from the

Galois Autocompleter 91 Sep 23, 2022
Residual2Vec: Debiasing graph embedding using random graphs

Residual2Vec: Debiasing graph embedding using random graphs This repository contains the code for S. Kojaku, J. Yoon, I. Constantino, and Y.-Y. Ahn, R

SADAMORI KOJAKU 5 Oct 12, 2022