Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

Overview

Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

This is the official repository for the EMNLP 2021 long paper Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration. We provide code for training and evaluating Phrase-BERT in addition to the datasets used in the paper.

Update: the model is also available now on Huggingface thanks to the help from whaleloops and nreimers!

Setup

This repository depends on sentence-BERT version 0.3.3, which you can install from the source using:

>>> git clone https://github.com/UKPLab/sentence-transformers.git --branch v0.3.3
>>> cd sentence-transformers/
>>> pip install -e .

Also you can install sentence-BERT with pip:

>>> pip install sentence-transformers==0.3.3

Quick Start

The following example shows how to use a trained Phrase-BERT model to embed phrases into dense vectors.

First download and unzip our model.

>>> cd 
   
    
>>> wget https://storage.googleapis.com/phrase-bert/phrase-bert/phrase-bert-model.zip
>>> unzip phrase-bert-model.zip -d phrase-bert-model/
>>> rm phrase-bert-model.zip

   

Then load the Phrase-BERT model through the sentence-BERT interface:

from sentence_transformers import SentenceTransformer
model_path = '
   
    '
model = SentenceTransformer(model_path)

   

You can compute phrase embeddings using Phrase-BERT as follows:

phrase_list = [ 'play an active role', 'participate actively', 'active lifestyle']
phrase_embs = model.encode( phrase_list )
[p1, p2, p3] = phrase_embs

As in sentence-BERT, the default output is a list of numpy arrays:

for phrase, embedding in zip(phrase_list, phrase_embs):
    print("Phrase:", phrase)
    print("Embedding:", embedding)
    print("")

An example of computing the dot product of phrase embeddings:

import numpy as np
print(f'The dot product between phrase 1 and 2 is: {np.dot(p1, p2)}')
print(f'The dot product between phrase 1 and 3 is: {np.dot(p1, p3)}')
print(f'The dot product between phrase 2 and 3 is: {np.dot(p2, p3)}')

An example of computing cosine similarity of phrase embeddings:

import torch 
from torch import nn
cos_sim = nn.CosineSimilarity(dim=0)
print(f'The cosine similarity between phrase 1 and 2 is: {cos_sim( torch.tensor(p1), torch.tensor(p2))}')
print(f'The cosine similarity between phrase 1 and 3 is: {cos_sim( torch.tensor(p1), torch.tensor(p3))}')
print(f'The cosine similarity between phrase 2 and 3 is: {cos_sim( torch.tensor(p2), torch.tensor(p3))}')

The output should look like:

The dot product between phrase 1 and 2 is: 218.43600463867188
The dot product between phrase 1 and 3 is: 165.48483276367188
The dot product between phrase 2 and 3 is: 160.51708984375
The cosine similarity between phrase 1 and 2 is: 0.8142536282539368
The cosine similarity between phrase 1 and 3 is: 0.6130303144454956
The cosine similarity between phrase 2 and 3 is: 0.584893524646759

Evaluation

Given the lack of a unified phrase embedding evaluation benchmark, we collect the following five phrase semantics evaluation tasks, which are described further in our paper:

Change config/model_path.py with the model path according to your directories and

  • For evaluation on Turney, run python eval_turney.py

  • For evaluation on BiRD, run python eval_bird.py

  • for evaluation on PPDB / PPDB-filtered / PAWS-short, run eval_ppdb_paws.py with:

    nohup python  -u eval_ppdb_paws.py \
        --full_run_mode \
        --task 
         
           \
        --data_dir 
          
            \
        --result_dir 
           
             \
        >./output.txt 2>&1 &
    
           
          
         

Train your own Phrase-BERT

If you would like to go beyond using the pre-trained Phrase-BERT model, you may train your own Phrase-BERT using data from the domain you are interested in. Please refer to phrase-bert/phrase_bert_finetune.py

The datasets we used to fine-tune Phrase-BERT are here: training data csv file and validation data csv file.

To re-produce the trained Phrase-BERT, please run:

export INPUT_DATA_PATH=
   
    
export TRAIN_DATA_FILE=
    
     
export VALID_DATA_FILE=
     
      
export INPUT_MODEL_PATH=bert-base-nli-stsb-mean-tokens 
export OUTPUT_MODEL_PATH=
      
       


python -u phrase_bert_finetune.py \
    --input_data_path $INPUT_DATA_PATH \
    --train_data_file $TRAIN_DATA_FILE \
    --valid_data_file $VALID_DATA_FILE \
    --input_model_path $INPUT_MODEL_PATH \
    --output_model_path $OUTPUT_MODEL_PATH

      
     
    
   

Citation:

Please cite us if you find this useful:

@inproceedings{phrasebertwang2021,
    author={Shufan Wang and Laure Thompson and Mohit Iyyer},
    Booktitle = {Empirical Methods in Natural Language Processing},
    Year = "2021",
    Title={Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration}
}
This repository contains the code for running the character-level Sandwich Transformers from our ACL 2020 paper on Improving Transformer Models by Reordering their Sublayers.

Improving Transformer Models by Reordering their Sublayers This repository contains the code for running the character-level Sandwich Transformers fro

Ofir Press 53 Sep 26, 2022
Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe NHV in the future.

Fast (GAN Based Neural) Vocoder Chinese README Todo Submit demo Support NHV Discription Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe include N

Zhengxi Liu (刘正曦) 134 Dec 16, 2022
Python library for interactive topic model visualization. Port of the R LDAvis package.

pyLDAvis Python library for interactive topic model visualization. This is a port of the fabulous R package by Carson Sievert and Kenny Shirley. pyLDA

Ben Mabey 1.7k Dec 20, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Meta Research 125 Dec 25, 2022
Binaural Speech Synthesis

Binaural Speech Synthesis This repository contains code to train a mono-to-binaural neural sound renderer. If you use this code or the provided datase

Facebook Research 135 Dec 18, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
Download videos from YouTube/Twitch/Twitter right in the Windows Explorer, without installing any shady shareware apps

youtube-dl and ffmpeg Windows Explorer Integration Download videos from YouTube/Twitch/Twitter and more (any platform that is supported by youtube-dl)

Wolfgang 226 Dec 30, 2022
Top2Vec is an algorithm for topic modeling and semantic search.

Top2Vec is an algorithm for topic modeling and semantic search. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors.

Dimo Angelov 2.4k Jan 06, 2023
Main repository for the chatbot Bobotinho.

Bobotinho Bot Main repository for the chatbot Bobotinho. ℹ️ Introduction Twitch chatbot with entertainment commands. ‎ 💻 Technologies Concurrent code

Bobotinho 14 Nov 29, 2022
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Jan 02, 2023
Chinese NER with albert/electra or other bert descendable model (keras)

Chinese NLP (albert/electra with Keras) Named Entity Recognization Project Structure ./ ├── NER │   ├── __init__.py │   ├── log

2 Nov 20, 2022
Python bindings to the dutch NLP tool Frog (pos tagger, lemmatiser, NER tagger, morphological analysis, shallow parser, dependency parser)

Frog for Python This is a Python binding to the Natural Language Processing suite Frog. Frog is intended for Dutch and performs part-of-speech tagging

Maarten van Gompel 46 Dec 14, 2022
L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources.

L3Cube-MahaCorpus L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources. We expand the existing Marathi monolingual

21 Dec 17, 2022
Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Jifan Chen 22 Oct 21, 2022
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
Simple Annotated implementation of GPT-NeoX in PyTorch

Simple Annotated implementation of GPT-NeoX in PyTorch This is a simpler implementation of GPT-NeoX in PyTorch. We have taken out several optimization

labml.ai 101 Dec 03, 2022
A Fast Command Analyser based on Dict and Pydantic

Alconna Alconna 隶属于ArcletProject, 在Cesloi内有内置 Alconna 是 Cesloi-CommandAnalysis 的高级版,支持解析消息链 一般情况下请当作简易的消息链解析器/命令解析器 文档 暂时的文档 Example from arclet.alcon

19 Jan 03, 2023
Creating a chess engine using GPT-3

GPT3Chess Creating a chess engine using GPT-3 Code for my article : https://towardsdatascience.com/gpt-3-play-chess-d123a96096a9 My game (white) vs GP

19 Dec 17, 2022
C.J. Hutto 3.8k Dec 30, 2022
Klexikon: A German Dataset for Joint Summarization and Simplification

Klexikon: A German Dataset for Joint Summarization and Simplification Dennis Aumiller and Michael Gertz Heidelberg University Under submission at LREC

Dennis Aumiller 8 Jan 03, 2023