Official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

Overview

Test-Agnostic Long-Tailed Recognition

This repository is the official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

  • TADE (our method) innovates the expert training scheme by introducing diversity-promoting expertise-guided losses, which train different experts to handle distinct class distributions. In this way, the learned experts would be more diverse than existing multi-expert methods, leading to better ensemble performance, and aggregatedly simulate a wide spectrum of possible class distributions.
  • TADE develops a new self-supervised method, namely prediction stability maximization, to adaptively aggregate these experts for better handling unknown test distribution, using unlabeled test class data.

Results

ImageNet-LT (ResNeXt-50)

Long-tailed recognition with uniform test class distribution:

Methods MACs(G) Top-1 acc. Model
Softmax 4.26 48.0
RIDE 6.08 56.3
TADE (ours) 6.08 58.8 Download

Test-agnostic long-tailed recognition:

Methods MACs(G) Forward-50 Forward-10 Uniform Backward-10 Backward-50
Softmax 4.26 66.1 60.3 48.0 34.9 27.6
RIDE 6.08 67.6 64.0 56.3 48.7 44.0
TADE (ours) 6.08 69.4 65.4 58.8 54.5 53.1

CIFAR100-Imbalance ratio 100 (ResNet-32)

Long-tailed recognition with uniform test class distribution:

Methods MACs(G) Top-1 acc.
Softmax 0.07 41.4
RIDE 0.11 48.0
TADE (ours) 0.11 49.8

Test-agnostic long-tailed recognition:

Methods MACs(G) Forward-50 Forward-10 Uniform Backward-10 Backward-50
Softmax 0.07 62.3 56.2 41.4 25.8 17.5
RIDE 0.11 63.0 57.0 48.0 35.4 29.3
TADE (ours) 0.11 65.9 58.3 49.8 43.9 42.4

Places-LT (ResNet-152)

Long-tailed recognition with uniform test class distribution:

Methods MACs(G) Top-1 acc.
Softmax 11.56 31.4
RIDE 13.18 40.3
TADE (ours) 13.18 40.9

Test-agnostic long-tailed recognition:

Methods MACs(G) Forward-50 Forward-10 Uniform Backward-10 Backward-50
Softmax 11.56 45.6 40.2 31.4 23.4 19.4
RIDE 13.18 43.1 41.6 40.3 38.2 36.9
TADE (ours) 13.18 46.4 43.3 40.9 41.4 41.6

iNaturalist 2018 (ResNet-50)

Long-tailed recognition with uniform test class distribution:

Methods MACs(G) Top-1 acc.
Softmax 4.14 64.7
RIDE 5.80 71.8
TADE (ours) 5.80 72.9

Test-agnostic long-tailed recognition:

Methods MACs(G) Forward-3 Forward-2 Uniform Backward-2 Backward-3
Softmax 4.14 65.4 65.5 64.7 64.0 63.4
RIDE 5.80 71.5 71.9 71.8 71.9 71.8
TADE (ours) 5.80 72.3 72.5 72.9 73.5 73.3

Requirements

  • To install requirements:
pip install -r requirements.txt

Hardware requirements

8 GPUs with >= 11G GPU RAM are recommended. Otherwise the model with more experts may not fit in, especially on datasets with more classes (the FC layers will be large). We do not support CPU training, but CPU inference could be supported by slight modification.

Datasets

Four bechmark datasets

  • Please download these datasets and put them to the /data file.
  • ImageNet-LT and Places-LT can be found at here.
  • iNaturalist data should be the 2018 version from here.
  • CIFAR-100 will be downloaded automatically with the dataloader.
data
├── ImageNet_LT
│   ├── test
│   ├── train
│   └── val
├── CIFAR100
│   └── cifar-100-python
├── Place365
│   ├── data_256
│   ├── test_256
│   └── val_256
└── iNaturalist 
    ├── test2018
    └── train_val2018

Txt files

  • We provide txt files for test-agnostic long-tailed recognition for ImageNet-LT, Places-LT and iNaturalist 2018. CIFAR-100 will be generated automatically with the code.
  • For iNaturalist 2018, please unzip the iNaturalist_train.zip.
data_txt
├── ImageNet_LT
│   ├── ImageNet_LT_backward2.txt
│   ├── ImageNet_LT_backward5.txt
│   ├── ImageNet_LT_backward10.txt
│   ├── ImageNet_LT_backward25.txt
│   ├── ImageNet_LT_backward50.txt
│   ├── ImageNet_LT_forward2.txt
│   ├── ImageNet_LT_forward5.txt
│   ├── ImageNet_LT_forward10.txt
│   ├── ImageNet_LT_forward25.txt
│   ├── ImageNet_LT_forward50.txt
│   ├── ImageNet_LT_test.txt
│   ├── ImageNet_LT_train.txt
│   ├── ImageNet_LT_uniform.txt
│   └── ImageNet_LT_val.txt
├── Places_LT_v2
│   ├── Places_LT_backward2.txt
│   ├── Places_LT_backward5.txt
│   ├── Places_LT_backward10.txt
│   ├── Places_LT_backward25.txt
│   ├── Places_LT_backward50.txt
│   ├── Places_LT_forward2.txt
│   ├── Places_LT_forward5.txt
│   ├── Places_LT_forward10.txt
│   ├── Places_LT_forward25.txt
│   ├── Places_LT_forward50.txt
│   ├── Places_LT_test.txt
│   ├── Places_LT_train.txt
│   ├── Places_LT_uniform.txt
│   └── Places_LT_val.txt
└── iNaturalist18
    ├── iNaturalist18_backward2.txt
    ├── iNaturalist18_backward3.txt
    ├── iNaturalist18_forward2.txt
    ├── iNaturalist18_forward3.txt
    ├── iNaturalist18_train.txt
    ├── iNaturalist18_uniform.txt
    └── iNaturalist18_val.txt 

Pretrained models

  • For the training on Places-LT, we follow previous method and use the pre-trained model.
  • Please download the checkpoint. Unzip and move the checkpoint files to /model/pretrained_model_places/.

Script

ImageNet-LT

Training

  • To train the expertise-diverse model, run this command:
python train.py -c configs/config_imagenet_lt_resnext50_tade.json

Evaluate

  • To evaluate expertise-diverse model on the uniform test class distribution, run:
python test.py -r checkpoint_path
  • To evaluate expertise-diverse model on agnostic test class distributions, run:
python test_all_imagenet.py -r checkpoint_path

Test-time training

  • To test-time train the expertise-diverse model for agnostic test class distributions, run:
python test_train_imagenet.py -c configs/test_time_imagenet_lt_resnext50_tade.json -r checkpoint_path

CIFAR100-LT

Training

  • To train the expertise-diverse model, run this command:
python train.py -c configs/config_cifar100_ir100_tade.json
  • One can change the imbalance ratio from 100 to 10/50 by changing the config file.

Evaluate

  • To evaluate expertise-diverse model on the uniform test class distribution, run:
python test.py -r checkpoint_path
  • To evaluate expertise-diverse model on agnostic test class distributions, run:
python test_all_cifar.py -r checkpoint_path

Test-time training

  • To test-time train the expertise-diverse model for agnostic test class distributions, run:
python test_train_cifar.py -c configs/test_time_cifar100_ir100_tade.json -r checkpoint_path
  • One can change the imbalance ratio from 100 to 10/50 by changing the config file.

Places-LT

Training

  • To train the expertise-diverse model, run this command:
python train.py -c configs/config_places_lt_resnet152_tade.json

Evaluate

  • To evaluate expertise-diverse model on the uniform test class distribution, run:
python test_places.py -r checkpoint_path
  • To evaluate expertise-diverse model on agnostic test class distributions, run:
python test_all_places.py -r checkpoint_path

Test-time training

  • To test-time train the expertise-diverse model for agnostic test class distributions, run:
python test_train_places.py -c configs/test_time_places_lt_resnet152_tade.json -r checkpoint_path

iNaturalist 2018

Training

  • To train the expertise-diverse model, run this command:
python train.py -c configs/config_iNaturalist_resnet50_tade.json

Evaluate

  • To evaluate expertise-diverse model on the uniform test class distribution, run:
python test.py -r checkpoint_path
  • To evaluate expertise-diverse model on agnostic test class distributions, run:
python test_all_inat.py -r checkpoint_path

Test-time training

  • To test-time train the expertise-diverse model for agnostic test class distributions, run:
python test_train_inat.py -c configs/test_time_iNaturalist_resnet50_tade.json -r checkpoint_path

Citation

If you find our work inspiring or use our codebase in your research, please cite our work.

@article{zhang2021test,
  title={Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision},
  author={Zhang, Yifan and Hooi, Bryan and Hong, Lanqing and Feng, Jiashi},
  journal={arXiv},
  year={2021}
}

Acknowledgements

This is a project based on this pytorch template.

The mutli-expert framework are based on RIDE. The data generation of agnostic test class distributions takes references from LADE.

Owner
vanint
vanint
Implementation of some unbalanced loss like focal_loss, dice_loss, DSC Loss, GHM Loss et.al

Implementation of some unbalanced loss for NLP task like focal_loss, dice_loss, DSC Loss, GHM Loss et.al Summary Here is a loss implementation reposit

121 Jan 01, 2023
Generate vector graphics from a textual caption

VectorAscent: Generate vector graphics from a textual description Example "a painting of an evergreen tree" python text_to_painting.py --prompt "a pai

Ajay Jain 97 Dec 15, 2022
Binaural Speech Synthesis

Binaural Speech Synthesis This repository contains code to train a mono-to-binaural neural sound renderer. If you use this code or the provided datase

Facebook Research 135 Dec 18, 2022
HiFi DeepVariant + WhatsHap workflowHiFi DeepVariant + WhatsHap workflow

HiFi DeepVariant + WhatsHap workflow Workflow steps align HiFi reads to reference with pbmm2 call small variants with DeepVariant, using two-pass meth

William Rowell 2 May 14, 2022
Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products

Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products.

Leah Pathan Khan 2 Jan 12, 2022
Jarvis is a simple Chatbot with a GUI capable of chatting and retrieving information and daily news from the internet for it's user.

J.A.R.V.I.S Kindly consider starring this repository if you like the program :-) What/Who is J.A.R.V.I.S? J.A.R.V.I.S is an chatbot written that is bu

Epicalable 50 Dec 31, 2022
📔️ Generate a text-based journal from a template file.

JGen 📔️ Generate a text-based journal from a template file. Contents Getting Started Example Overview Usage Details Reserved Keywords Gotchas Getting

Harrison Broadbent 21 Sep 25, 2022
My implementation of Safaricom Machine Learning Codility test. The code has bugs, logical I guess I made errors and any correction will be appreciated.

Safaricom_Codility Machine Learning 2022 The test entails two questions. Question 1 was on Machine Learning. Question 2 was on SQL I ran out of time.

Lawrence M. 1 Mar 03, 2022
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Dec 26, 2022
A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

Ian 1 Jan 15, 2022
official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

Plugin 3 Jan 12, 2022
A library for end-to-end learning of embedding index and retrieval model

Poeem Poeem is a library for efficient approximate nearest neighbor (ANN) search, which has been widely adopted in industrial recommendation, advertis

54 Dec 21, 2022
topic modeling on unstructured data in Space news articles retrieved from the Guardian (UK) newspaper using API

NLP Space News Topic Modeling Photos by nasa.gov (1, 2, 3, 4, 5) and extremetech.com Table of Contents Project Idea Data acquisition Primary data sour

edesz 1 Jan 03, 2022
Examples of using sparse attention, as in "Generating Long Sequences with Sparse Transformers"

Status: Archive (code is provided as-is, no updates expected) Update August 2020: For an example repository that achieves state-of-the-art modeling pe

OpenAI 1.3k Dec 28, 2022
Scikit-learn style model finetuning for NLP

Scikit-learn style model finetuning for NLP Finetune is a library that allows users to leverage state-of-the-art pretrained NLP models for a wide vari

indico 665 Dec 17, 2022
Mycroft Core, the Mycroft Artificial Intelligence platform.

Mycroft Mycroft is a hackable open source voice assistant. Table of Contents Getting Started Running Mycroft Using Mycroft Home Device and Account Man

Mycroft 6.1k Jan 09, 2023
Protein Language Model

ProteinLM We pretrain protein language model based on Megatron-LM framework, and then evaluate the pretrained model results on TAPE (Tasks Assessing P

THUDM 77 Dec 27, 2022
Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

1.1k Dec 27, 2022
Snowball compiler and stemming algorithms

Snowball is a small string processing language for creating stemming algorithms for use in Information Retrieval, plus a collection of stemming algori

Snowball Stemming language and algorithms 613 Jan 07, 2023
Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization (ACL 2021)

Structured Super Lottery Tickets in BERT This repo contains our codes for the paper "Super Tickets in Pre-Trained Language Models: From Model Compress

Chen Liang 16 Dec 11, 2022