Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Related tags

Text Data & NLPembert
Overview

EmBERT: A Transformer Model for Embodied, Language-guided Visual Task Completion

We present Embodied BERT (EmBERT), a transformer-based model which can attend to high-dimensional, multi-modal inputs across long temporal horizons for language-conditioned task completion. Additionally, we bridge the gap between successful object-centric navigation models used for non-interactive agents and the language-guided visual task completion benchmark, ALFRED, by introducing object navigation targets for EmBERT training. We achieve competitive performance on the ALFRED benchmark, and EmBERT marks the first transformer-based model to successfully handle the long-horizon, dense, multi-modal histories of ALFRED, and the first ALFRED model to utilize object-centric navigation targets.

In this repository, we provide the entire codebase which is used for training and evaluating EmBERT performance on the ALFRED dataset. It's mostly based on AllenNLP and PyTorch-Lightning therefore it's inherently easily to extend.

Setup

We used Anaconda for our experiments. Please create an anaconda environment and then install the project dependencies with the following command:

pip install -r requirements.txt

As next step, we will download the ALFRED data using the script scripts/download_alfred_data.sh as follows:

sh scripts/donwload_alfred_data.sh json_feat

Before doing so, make sure that you have installed p7zip because is used to extract the trajectory files.

MaskRCNN fine-tuning

We provide the code to fine-tune a MaskRCNN model on the ALFRED dataset. To create the vision dataset, use the script scripts/generate_vision_dataset.sh. This will create the dataset splits required by the training process. After this, it's possible to run the model fine-tuning using:

PYTHONPATH=. python vision/finetune.py --batch_size 8 --gradient_clip_val 5 --lr 3e-4 --gpus 1 --accumulate_grad_batches 2 --num_workers 4 --save_dir storage/models/vision/maskrcnn_bs_16_lr_3e-4_epochs_46_7k_batches --max_epochs 46 --limit_train_batches 7000

We provide this code for reference however in our experiments we used the MaskRCNN model from MOCA which applies more sophisticated data augmentation techniques to improve performance on the ALFRED dataset.

ALFRED Visual Features extraction

MaskRCNN

The visual feature extraction script is responsible for generating the MaskRCNN features as well as orientation information for every bounding box. For the MaskrCNN model, we use the pretrained model from MOCA. You can download it from their GitHub page. First, we create the directory structure and then download the model weights:

mkdir -p storage/models/vision/moca_maskrcnn;
wget https://alfred-colorswap.s3.us-east-2.amazonaws.com/weight_maskrcnn.pt -O storage/models/vision/moca_maskrcnn/weight_maskrcnn.pt; 

We extract visual features for training trajectories using the following command:

sh scripts/generate_moca_maskrcnn.sh

You can refer to the actual extraction script scripts/generate_maskrcnn_horizon0.py for additional parameters. We executed this command on an p3.2xlarge instance with NVIDIA V100. This command will populate the directory storage/data/alfred/json_feat_2.1.0/ with the visual features for each trajectory step. In particular, the parameter --features_folder will specify the subdirectory (for each trajectory) that will contain the compressed NumPy files constituting the features. Each NumPy file has the following structure:

dict(
    box_features=np.array,
    roi_angles=np.array,
    boxes=np.array,
    masks=np.array,
    class_probs=np.array,
    class_labels=np.array,
    num_objects=int,
    pano_id=int
)

Data-augmentation procedure

In our paper, we describe a procedure to augment the ALFREd trajectories with object and corresponding receptacle information. In particular, we reply the trajectories and we make sure to track object and its receptacle during a subgoal. The data augmentation script will create a new trajectory file called ref_traj_data.json that mimics the same data structure of the original ALFRED dataset but adds to it a few fields for each action.

To start generating the refined data, use the following script:

PYTHONPATH=. python scripts/generate_landmarks.py 

EmBERT Training

Vocabulary creation

We use AllenNLP for training our models. Before starting the training we will generate the vocabulary for the model using the following command:

allennlp build-vocab training_configs/embert/embert_oscar.jsonnet storage/models/embert/vocab.tar.gz --include-package grolp

Training

First, we need to download the OSCAR checkpoint before starting the training process. We used a version of OSCAR which doesn't use object labels which can be freely downloaded following the instruction on GitHub. Make sure to download this file in the folder storage/models/pretrained using the following commands:

mkdir -p storage/models/pretrained/;
wget https://biglmdiag.blob.core.windows.net/oscar/pretrained_models/base-no-labels.zip -O storage/models/pretrained/oscar.zip;
unzip storage/models/pretrained/oscar.zip -d storage/models/pretrained/;
mv storage/models/pretrained/base-no-labels/ep_67_588997/pytorch_model.bin storage/models/pretrained/oscar-base-no-labels.bin;
rm storage/models/pretrained/oscar.zip;

A new model can be trained using the following command:

allennlp train training_configs/embert/embert_widest.jsonnet -s storage/models/alfred/embert --include-package grolp

When training for the first time, make sure to add to the previous command the following parameters: --preprocess --num_workers 4. This will make sure that the dataset is preprocessed and cached in order to speedup training. We run training using AWS EC2 instances p3.8xlarge with 16 workers on a single GPU per configuration.

The configuration file training_configs/embert/embert_widest.jsonnet contains all the parameters that you might be interested in if you want to change the way the model works or any reference to the actual features files. If you're interested in how to change the model itself, please refer to the model definition. The parameters in the constructor of the class will reflect the ones reported in the configuration file. In general, this project has been developed by using AllenNLP has a reference framework. We refer the reader to the official AllenNLP documentation for more details about how to structure a project.

EmBERT evaluation

We modified the original ALFRED evaluation script to make sure that the results are completely reproducible. Refer to the original repository for more information.

To run the evaluation on the valid_seen and valid_unseen you can use the provided script scripts/run_eval.sh in order to evaluate your model. The EmBERT trainer has different ways of saving checkpoints. At the end of the training, it will automatically save the best model in an archive named model.tar.gz in the destination folder (the one specified with -s). To evaluate it run the following command:

sh scripts/run_eval.sh <your_model_path>/model.tar.gz 

It's also possible to run the evaluation of a specific checkpoint. This can be done by running the previous command as follows:

sh scripts/run_eval.sh <your_model_path>/model-epoch=6.ckpt

In this way the evaluation script will load the checkpoint at epoch 6 in the path . When specifying a checkpoint directly, make sure that the folder contains both config.json file and vocabulary directory because they are required by the script to load all the correct model parameters.

Citation

If you're using this codebase please cite our work:

@article{suglia:embert,
  title={Embodied {BERT}: A Transformer Model for Embodied, Language-guided Visual Task Completion},
  author={Alessandro Suglia and Qiaozi Gao and Jesse Thomason and Govind Thattai and Gaurav Sukhatme},
  journal={arXiv},
  year={2021},
  url={https://arxiv.org/abs/2108.04927}
}
[WWW 2021 GLB] New Benchmarks for Learning on Non-Homophilous Graphs

New Benchmarks for Learning on Non-Homophilous Graphs Here are the codes and datasets accompanying the paper: New Benchmarks for Learning on Non-Homop

94 Dec 21, 2022
Repository for Project Insight: NLP as a Service

Project Insight NLP as a Service Contents Introduction Features Installation Setup and Documentation Project Details Demonstration Directory Details H

Abhishek Kumar Mishra 286 Dec 06, 2022
Rich Prosody Diversity Modelling with Phone-level Mixture Density Network

Phone Level Mixture Density Network for TTS This repo contains pytorch implementation of paper Rich Prosody Diversity Modelling with Phone-level Mixtu

Rishikesh (ऋषिकेश) 42 Dec 13, 2022
This repository describes our reproducible framework for assessing self-supervised representation learning from speech

LeBenchmark: a reproducible framework for assessing SSL from speech Self-Supervised Learning (SSL) using huge unlabeled data has been successfully exp

49 Aug 24, 2022
pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks

A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

297 Dec 29, 2022
Repository for the paper: VoiceMe: Personalized voice generation in TTS

🗣 VoiceMe: Personalized voice generation in TTS Abstract Novel text-to-speech systems can generate entirely new voices that were not seen during trai

Pol van Rijn 80 Dec 29, 2022
BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network) BERTAC is a framework that combines a

6 Jan 24, 2022
This repository contains (not all) code from my project on Named Entity Recognition in philosophical text

NERphilosophy 👋 Welcome to the github repository of my BsC thesis. This repository contains (not all) code from my project on Named Entity Recognitio

Ruben 1 Jan 27, 2022
This is Assignment1 code for the Web Data Processing System.

This is a Python program to Entity Linking by processing WARC files. We recognize entities from web pages and link them to a Knowledge Base(Wikidata).

3 Dec 04, 2022
BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents

BROS (BERT Relying On Spatiality) is a pre-trained language model focusing on text and layout for better key information extraction from documents. Given the OCR results of the document image, which

Clova AI Research 94 Dec 30, 2022
A minimal Conformer ASR implementation adapted from ESPnet.

Conformer ASR A minimal Conformer ASR implementation adapted from ESPnet. Introduction I want to use the pre-trained English ASR model provided by ESP

Niu Zhe 3 Jan 24, 2022
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

Francis R. Willett 305 Dec 22, 2022
Training code of Spatial Time Memory Network. Semi-supervised video object segmentation.

Training-code-of-STM This repository fully reproduces Space-Time Memory Networks Performance on Davis17 val set&Weights backbone training stage traini

haochen wang 128 Dec 11, 2022
This project consists of data analysis and data visualization (done using python)of all IPL seasons from 2008 to 2019 and answering the most asked questions about the IPL.

IPL-data-analysis This project consists of data analysis and data visualization of all IPL seasons from 2008 to 2019 and answering the most asked ques

Sivateja A T 2 Feb 08, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
Pretty-doc - Composable text objects with python

pretty-doc from __future__ import annotations from dataclasses import dataclass

Taine Zhao 2 Jan 17, 2022
Machine Learning Course Project, IMDB movie review sentiment analysis by lstm, cnn, and transformer

IMDB Sentiment Analysis This is the final project of Machine Learning Courses in Huazhong University of Science and Technology, School of Artificial I

Daniel 0 Dec 27, 2021
📝An easy-to-use package to restore punctuation of the text.

✏️ rpunct - Restore Punctuation This repo contains code for Punctuation restoration. This package is intended for direct use as a punctuation restorat

Daulet Nurmanbetov 72 Dec 30, 2022
ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset.

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset. Through its Python API, the pretrained model can be fine-tuned on any protein-related task in

241 Jan 04, 2023
Reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer: Self-Attention with Linear Complexity)

Linear Multihead Attention (Linformer) PyTorch Implementation of reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer:

Kui Xu 58 Dec 23, 2022