BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

Related tags

Text Data & NLPbertac
Overview

BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

BERTAC is a framework that combines a Transformer-based Language Model (TLM) such as BERT with an adversarially pretrained CNN (Convolutional Neural Network). It was proposed in our ACL-IJCNLP paper:

We showed in our experiments that BERTAC can improve the performance of TLMs on GLUE and open-domain QA tasks when using ALBERT or RoBERTa as the base TLM.

This repository provides the source code for BERTAC and adversarially pretrained CNN models described in the ACL-IJCNLP 2021 paper.

You can download the code and CNN models by following the procedure described in the "Try BERTAC section." The procedure includes downloading the BERTAC code, installing libraries required to run the code, and downloading pretrained models of the fastText word embedding vectors, the ALBERT xxlarge model, and our adversarially pretrained CNNs. The CNNs provided here were pretrained using the settings described in our ACL-IJCNLP 2021 paper. They can be downloaded automatically by running the script download_pretrained_model.sh as described in the "Try BERTAC section" or manually from the following page: cnn_models/README.md.

After this is done, you can run the GLUE and Open-domain QA experiments in the ACL-IJCNLP 2021 paper by following the procedure described in these pages, examples/GLUE/README.md and examples/QA/README.md. The procedure for the experiments starts from downloading GLUE and open-domain QA datasets (Quasar-T and SearchQA datasets for open-domain QA) and includes preprocessing the dataset and training/evaluating BERTAC models.

Overview of BERTAC

BERTAC is designed to improve Transformer-based Language Models such as ALBERT and BERT by integrating a simple CNN to them. The CNN is pretrained in a GAN (Generative Adversarial Network) style using Wikipedia data. By using as training data sentences in which an entity was masked in a cloze-test style, the CNN can generate alternative entity representations from sentences. BERTAC aims to improve TLMs for a variety of downstream tasks by using multiple text representations computed from different perspectives, i.e., those of TLMs trained by masked language modeling and those of CNNs trained in a GAN style to generate entity representations.

For a technical description of BERTAC, see our paper:

Try BERTAC

Prerequisites

BERTAC requires the following libraries and tools at runtime.

  • CUDA: A CUDA runtime must be available in the runtime environment. Currently, BERTAC has been tested with CUDA 10.1 and 10.2.
  • Python and Pytorch: BERTAC has been tested with Python 3.6 and 3.8, and Pytorch 1.5.1 and 1.8.1.
  • Perl: BERTAC has been tested with Perl 5.16.1 and 5.26.2.

Installation

You can install BERTAC by following the procedure described below.

  • Create a new conda environment bertac using the following command. Set a CUDA version available in your environment.
conda create -n bertac python=3.8 tqdm requests scikit-learn cudatoolkit cudnn lz4
  • Install Pytorch into the conda environment
conda activate bertac
conda install -n bertac pytorch=1.8 -c pytorch
  • Git clone the BERTAC code and run pip install -r requirements.txt in the root directory.
# git clone the code
git clone https://github.com/nict-wisdom/bertac
cd bertac

# Install requirements
pip install -r requirements.txt
  • Download the spaCy model en_core_web_md.
# Download the spaCy model 'en_core_web_md' 
python -m spacy download en_core_web_md
  • Install Perl and its JSON module into the conda environment.
# Install Perl and its JSON module
conda install -c anaconda perl -n bertac38
cpan install JSON
# Download pretrained CNN models, the fastText word embedding vectors, and
# the ALBERT xxlarge model (albert-xxlarge-v2) 
sh download_pretrained_model.sh

Note: the BERTAC code was built on the HuggingFace Transformers v2.4.1 and requires the NVIDIA apex as in the HuggingFace Transformers. Please install the NVIDIA apex following the procedure described in the NVIDIA apex page.

You can enter examples/GLUE or examples/QA folders and try the bash commands under these folders to run GLUE or open-domain QA experiments (see examples/GLUE/README.md and examples/QA/README.md for details on the procedures of the experiments).

GLUE experiments

You can run GLUE experiments by following the procedure described in examples/GLUE/README.md.

Results

The performances of BERTAC and other baseline models on the GLUE development set are shown below.

Models MNLI QNLI QQP RTE SST MRPC CoLA STS Avg.
RoBERTa-large 90.2/90.2 94.7 92.2 86.6 96.4 90.9 68.0 92.4 88.9
ELECTRA-large 90.9/- 95.0 92.4 88.0 96.9 90.8 69.1 92.6 89.5
ALBERT-xxlarge 90.8/- 95.3 92.2 89.2 96.9 90.9 71.4 93.0 90.0
DeBERTa-large 91.1/91.1 95.3 92.3 88.3 96.8 91.9 70.5 92.8 90.0
BERTAC
(ALBERT-xxlarge)
91.3/91.1 95.7 92.3 89.9 97.2 92.4 73.7 93.1 90.7

BERTAC(ALBERT-xxlarge), i.e., BERTAC using ALBERT-xxlarge as its base TLM, showed a higher average score (Avg. of the last column in the table) than (1) ALBERT-xxlarge (the base TLM) and (2) DeBERTa-large (the state-of-the-art method for the GLUE development set).

Open-domain QA experiments

You can run open-domain QA experiments by following the procedure described in examples/QA/README.md.

Results

The performances of BERTAC and other baseline methods on Quasar-T and SearchQA benchmarks are as follows.

Model Quasar-T (EM/F1) SearchQA (EM/F1)
OpenQA 42.2/49.3 58.8/64.5
OpenQA+ARG 43.2/49.7 59.6/65.3
WKLM(BERT-base) 45.8/52.2 61.7/66.7
MBERT(BERT-large) 51.1/59.1 65.1/70.7
CFormer(RoBERTa-large) 54.0/63.9 68.0/75.1
BERTAC(RoBERTa-large) 55.8/63.7 71.9/77.1
BERTAC(ALBERT-xxlarge) 58.0/65.8 74.0/79.2

Here, BERTAC(RoBERTa-large) and BERTAC(ALBERT-xxlarge) represent BERTAC using RoBERTa-large and ALBERT-xxlarge as their base TLM, respectively. BERTAC with any of the base TLMs showed better EM (Exact match with the gold standard answers) than the state-of-the-art method, CFormer(RoBERTa-large), for both benchmarks (Quasar-T and SearchQA).

Citation

If you use this source code, we would appreciate if you cite the following paper:

@inproceedings{ohetal2021bertac,
  title={BERTAC: Enhancing Transformer-based Language Models 
         with Adversarially Pretrained Convolutional Neural Networks},
  author={Jong-Hoon Oh and Ryu Iida and 
          Julien Kloetzer and Kentaro Torisawa},
  booktitle={The Joint Conference of the 59th Annual Meeting  
             of the Association for Computational Linguistics  
             and the 11th International Joint Conference 
             on Natural Language Processing (ACL-IJCNLP 2021)},
  year={2021}
}

Acknowledgements

Part of the source codes is borrowed from HuggingFace Transformers v2.4.1 licensed under Apache 2.0, DrQA licensed under BSD, and Open-QA licensed under MIT.

You might also like...
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5

NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in

Learn meanings behind words is a key element in NLP. This project concentrates on the disambiguation of preposition senses. Therefore, we train a bert-transformer model and surpass the state-of-the-art.

New State-of-the-Art in Preposition Sense Disambiguation Supervisor: Prof. Dr. Alexander Mehler Alexander Henlein Institutions: Goethe University TTLa

LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated

Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated. This engine can later be used for downstream tasks in NLP such as Q&A, summarization, generation, and natural language understanding (NLU).

PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer
PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Cross-Covariance Image Transformer (XCiT) PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer L

A library for finding knowledge neurons in pretrained transformer models.
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

This repository contains the code for "Generating Datasets with Pretrained Language Models".

Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces

Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)
Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

CIRPLANT This repository contains the code and pre-trained models for Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT) For d

Releases(cnn_2.3.4.300)
ACL'22: Structured Pruning Learns Compact and Accurate Models

☕ CoFiPruning: Structured Pruning Learns Compact and Accurate Models This repository contains the code and pruned models for our ACL'22 paper Structur

Princeton Natural Language Processing 130 Jan 04, 2023
Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Ankur Dhuriya 10 Oct 13, 2022
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET

Training COMET using seq2seq setting Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET. The codes are modified from run_summarizati

tqfang 9 Dec 17, 2022
Translate - a PyTorch Language Library

NOTE PyTorch Translate is now deprecated, please use fairseq instead. Translate - a PyTorch Language Library Translate is a library for machine transl

775 Dec 24, 2022
Use Google's BERT for named entity recognition (CoNLL-2003 as the dataset).

For better performance, you can try NLPGNN, see NLPGNN for more details. BERT-NER Version 2 Use Google's BERT for named entity recognition (CoNLL-2003

Kaiyinzhou 1.2k Dec 26, 2022
Finding Label and Model Errors in Perception Data With Learned Observation Assertions

Finding Label and Model Errors in Perception Data With Learned Observation Assertions This is the project page for Finding Label and Model Errors in P

Stanford Future Data Systems 17 Oct 14, 2022
NLP library designed for reproducible experimentation management

Welcome to the Transfer NLP library, a framework built on top of PyTorch to promote reproducible experimentation and Transfer Learning in NLP You can

Feedly 290 Dec 20, 2022
This Project is based on NLTK It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its antonyms, its synonyms

This Project is based on NLTK(Natural Language Toolkit) It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its

SaiVenkatDhulipudi 2 Nov 17, 2021
Repository for fine-tuning Transformers 🤗 based seq2seq speech models in JAX/Flax.

Seq2Seq Speech in JAX A JAX/Flax repository for combining a pre-trained speech encoder model (e.g. Wav2Vec2, HuBERT, WavLM) with a pre-trained text de

Sanchit Gandhi 21 Dec 14, 2022
Translation to python of Chris Sims' optimization function

pycsminwel This is a locol minimization algorithm. Uses a quasi-Newton method with BFGS update of the estimated inverse hessian. It is robust against

Gustavo Amarante 1 Mar 21, 2022
Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Smart discord chatbot integrated with Dialogflow

academic-NLP-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classifi

186 Dec 24, 2022
Datasets of Automatic Keyphrase Extraction

This repository contains 20 annotated datasets of Automatic Keyphrase Extraction made available by the research community. Following are the datasets and the original papers that proposed them. If yo

LIAAD - Laboratory of Artificial Intelligence and Decision Support 163 Dec 23, 2022
KoBERTopic은 BERTopic을 한국어 데이터에 적용할 수 있도록 토크나이저와 BERT를 수정한 코드입니다.

KoBERTopic 모델 소개 KoBERTopic은 BERTopic을 한국어 데이터에 적용할 수 있도록 토크나이저와 BERT를 수정했습니다. 기존 BERTopic : https://github.com/MaartenGr/BERTopic/tree/05a6790b21009d

Won Joon Yoo 26 Jan 03, 2023
Code Implementation of "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE: Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction ***** New March 31th, 2022: Scikit-Style API for Easy Usage *****

Chia Yew Ken 111 Dec 23, 2022
This repository contains the code for "Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference"

Pattern-Exploiting Training (PET) This repository contains the code for Exploiting Cloze Questions for Few-Shot Text Classification and Natural Langua

Timo Schick 1.4k Dec 30, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Twitter-Sentiment-Analysis - Twitter sentiment analysis for india's top online retailers(2019 to 2022)

Twitter-Sentiment-Analysis Twitter sentiment analysis for india's top online retailers(2019 to 2022) Project Overview : Sentiment Analysis helps us to

Balaji R 1 Jan 01, 2022