Translate - a PyTorch Language Library

Overview

NOTE

PyTorch Translate is now deprecated, please use fairseq instead.


Translate - a PyTorch Language Library

Translate is a library for machine translation written in PyTorch. It provides training for sequence-to-sequence models. Translate relies on fairseq, a general sequence-to-sequence library, which means that models implemented in both Translate and Fairseq can be trained. Translate also provides the ability to export some models to Caffe2 graphs via ONNX and to load and run these models from C++ for production purposes. Currently, we export components (encoder, decoder) to Caffe2 separately and beam search is implemented in C++. In the near future, we will be able to export the beam search as well. We also plan to add export support to more models.

Quickstart

If you are just interested in training/evaluating MT models, and not in exporting the models to Caffe2 via ONNX, you can install Translate for Python 3 by following these few steps:

  1. Install pytorch
  2. Install fairseq
  3. Clone this repository git clone https://github.com/pytorch/translate.git pytorch-translate && cd pytorch-translate
  4. Run python setup.py install

Provided you have CUDA installed you should be good to go.

Requirements and Full Installation

Translate Requires:

  • A Linux operating system with a CUDA compatible card
  • GNU C++ compiler version 4.9.2 and above
  • A CUDA installation. We recommend CUDA 8.0 or CUDA 9.0

Use Our Docker Image:

Install Docker and nvidia-docker, then run

sudo docker pull pytorch/translate
sudo nvidia-docker run -i -t --rm pytorch/translate /bin/bash
. ~/miniconda/bin/activate
cd ~/translate

You should now be able to run the sample commands in the Usage Examples section below. You can also see the available image versions under https://hub.docker.com/r/pytorch/translate/tags/.

Install Translate from Source:

These instructions were mainly tested on Ubuntu 16.04.5 LTS (Xenial Xerus) with a Tesla M60 card and a CUDA 9 installation. We highly encourage you to report an issue if you are unable to install this project for your specific configuration.

  • If you don't already have an existing Anaconda environment with Python 3.6, you can install one via Miniconda3:

    wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh
    chmod +x miniconda.sh
    ./miniconda.sh -b -p ~/miniconda
    rm miniconda.sh
    . ~/miniconda/bin/activate
    
  • Clone the Translate repo:

    git clone https://github.com/pytorch/translate.git
    pushd translate
    
  • Install the PyTorch conda package:

    # Set to 8 or 9 depending on your CUDA version.
    TMP_CUDA_VERSION="9"
    
    # Uninstall previous versions of PyTorch. Doing this twice is intentional.
    # Error messages about torch not being installed are benign.
    pip uninstall -y torch
    pip uninstall -y torch
    
    # This may not be necessary if you already have the latest cuDNN library.
    conda install -y cudnn
    
    # Add LAPACK support for the GPU.
    conda install -y -c pytorch "magma-cuda${TMP_CUDA_VERSION}0"
    
    # Install the combined PyTorch nightly conda package.
    conda install pytorch-nightly cudatoolkit=${TMP_CUDA_VERSION}.0 -c pytorch
    
    # Install NCCL2.
    wget "https://s3.amazonaws.com/pytorch/nccl_2.1.15-1%2Bcuda${TMP_CUDA_VERSION}.0_x86_64.txz"
    TMP_NCCL_VERSION="nccl_2.1.15-1+cuda${TMP_CUDA_VERSION}.0_x86_64"
    tar -xvf "${TMP_NCCL_VERSION}.txz"
    rm "${TMP_NCCL_VERSION}.txz"
    
    # Set some environmental variables needed to link libraries correctly.
    export CONDA_PATH="$(dirname $(which conda))/.."
    export NCCL_ROOT_DIR="$(pwd)/${TMP_NCCL_VERSION}"
    export LD_LIBRARY_PATH="${CONDA_PATH}/lib:${NCCL_ROOT_DIR}/lib:${LD_LIBRARY_PATH}"
    
  • Install ONNX:

    git clone --recursive https://github.com/onnx/onnx.git
    yes | pip install ./onnx 2>&1 | tee ONNX_OUT
    

If you get a Protobuf compiler not found error, you need to install it:

conda install -c anaconda protobuf

Then, try to install ONNX again:

yes | pip install ./onnx 2>&1 | tee ONNX_OUT
  • Build Translate:

    pip uninstall -y pytorch-translate
    python3 setup.py build develop
    

Now you should be able to run the example scripts below!

Usage Examples

Note: the example commands given assume that you are the root of the cloned GitHub repository or that you're in the translate directory of the Docker or Amazon image. You may also need to make sure you have the Anaconda environment activated.

Training

We provide an example script to train a model for the IWSLT 2014 German-English task. We used this command to obtain a pretrained model:

bash pytorch_translate/examples/train_iwslt14.sh

The pretrained model actually contains two checkpoints that correspond to training twice with random initialization of the parameters. This is useful to obtain ensembles. This dataset is relatively small (~160K sentence pairs), so training will complete in a few hours on a single GPU.

Training with tensorboard visualization

We provide support for visualizing training stats with tensorboard. As a dependency, you will need tensorboard_logger installed.

pip install tensorboard_logger

Please also make sure that tensorboard is installed. It also comes with tensorflow installation.

You can use the above example script to train with tensorboard, but need to change line 10 from :

CUDA_VISIBLE_DEVICES=0 python3 pytorch_translate/train.py

to

CUDA_VISIBLE_DEVICES=0 python3 pytorch_translate/train_with_tensorboard.py

The event log directory for tensorboard can be specified by option --tensorboard_dir with a default value: run-1234. This directory is appended to your --save_dir argument.

For example in the above script, you can visualize with:

tensorboard --logdir checkpoints/runs/run-1234

Multiple runs can be compared by specifying different --tensorboard_dir. i.e. run-1234 and run-2345. Then

tensorboard --logdir checkpoints/runs

can visualize stats from both runs.

Pretrained Model

A pretrained model for IWSLT 2014 can be evaluated by running the example script:

bash pytorch_translate/examples/generate_iwslt14.sh

Note the improvement in performance when using an ensemble of size 2 instead of a single model.

Exporting a Model with ONNX

We provide an example script to export a PyTorch model to a Caffe2 graph via ONNX:

bash pytorch_translate/examples/export_iwslt14.sh

This will output two files, encoder.pb and decoder.pb, that correspond to the computation of the encoder and one step of the decoder. The example exports a single checkpoint (--checkpoint model/averaged_checkpoint_best_0.pt but is also possible to export an ensemble (--checkpoint model/averaged_checkpoint_best_0.pt --checkpoint model/averaged_checkpoint_best_1.pt). Note that during export, you can also control a few hyperparameters such as beam search size, word and UNK rewards.

Using the Model

To use the sample exported Caffe2 model to translate sentences, run:

echo "hallo welt" | bash pytorch_translate/examples/translate_iwslt14.sh

Note that the model takes in BPE inputs, so some input words need to be split into multiple tokens. For instance, "hineinstopfen" is represented as "hinein@@ stop@@ fen".

PyTorch Translate Research

We welcome you to explore the models we have in the pytorch_translate/research folder. If you use them and encounter any errors, please paste logs and a command that we can use to reproduce the error. Feel free to contribute any bugfixes or report your experience, but keep in mind that these models are a work in progress and thus are currently unsupported.

Join the Translate Community

We welcome contributions! See the CONTRIBUTING.md file for how to help out.

License

Translate is BSD-licensed, as found in the LICENSE file.

Neural network models for joint POS tagging and dependency parsing (CoNLL 2017-2018)

Neural Network Models for Joint POS Tagging and Dependency Parsing Implementations of joint models for POS tagging and dependency parsing, as describe

Dat Quoc Nguyen 152 Sep 02, 2022
Linear programming solver for paper-reviewer matching and mind-matching

Paper-Reviewer Matcher A python package for paper-reviewer matching algorithm based on topic modeling and linear programming. The algorithm is impleme

Titipat Achakulvisut 66 Jul 05, 2022
Precision Medicine Knowledge Graph (PrimeKG)

PrimeKG Website | bioRxiv Paper | Harvard Dataverse Precision Medicine Knowledge Graph (PrimeKG) presents a holistic view of diseases. PrimeKG integra

Machine Learning for Medicine and Science @ Harvard 103 Dec 10, 2022
Natural Language Processing with transformers

we want to create a repo to illustrate usage of transformers in chinese

Datawhale 763 Dec 27, 2022
A python framework to transform natural language questions to queries in a database query language.

__ _ _ _ ___ _ __ _ _ / _` | | | |/ _ \ '_ \| | | | | (_| | |_| | __/ |_) | |_| | \__, |\__,_|\___| .__/ \__, | |_| |_| |___/

Machinalis 1.2k Dec 18, 2022
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 29, 2022
Finally, some decent sample sentences

tts-dataset-prompts This repository aims to be a decent set of sentences for people looking to clone their own voices (e.g. using Tacotron 2). Each se

hecko 19 Dec 13, 2022
Revisiting Pre-trained Models for Chinese Natural Language Processing (Findings of EMNLP 2020)

This repository contains the resources in our paper "Revisiting Pre-trained Models for Chinese Natural Language Processing", which will be published i

Yiming Cui 463 Dec 30, 2022
Mycroft Core, the Mycroft Artificial Intelligence platform.

Mycroft Mycroft is a hackable open source voice assistant. Table of Contents Getting Started Running Mycroft Using Mycroft Home Device and Account Man

Mycroft 6.1k Jan 09, 2023
Multilingual Emotion classification using BERT (fine-tuning). Published at the WASSA workshop (ACL2022).

XLM-EMO: Multilingual Emotion Prediction in Social Media Text Abstract Detecting emotion in text allows social and computational scientists to study h

MilaNLP 35 Sep 17, 2022
iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform

iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform This repo try to implement iSTFTNet : Fast

Rishikesh (ऋषिकेश) 126 Jan 02, 2023
Chinese NER with albert/electra or other bert descendable model (keras)

Chinese NLP (albert/electra with Keras) Named Entity Recognization Project Structure ./ ├── NER │   ├── __init__.py │   ├── log

2 Nov 20, 2022
Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning

GenSen Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning Sandeep Subramanian, Adam Trischler, Yoshua B

Maluuba Inc. 309 Oct 19, 2022
A Domain Specific Language (DSL) for building language patterns. These can be later compiled into spaCy patterns, pure regex, or any other format

RITA DSL This is a language, loosely based on language Apache UIMA RUTA, focused on writing manual language rules, which compiles into either spaCy co

Šarūnas Navickas 60 Sep 26, 2022
xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building blocks.

Description xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building bl

Facebook Research 2.3k Jan 08, 2023
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
Legal text retrieval for python

legal-text-retrieval Overview This system contains 2 steps: generate training data containing negative sample found by mixture score of cosine(tfidf)

Nguyễn Minh Phương 22 Dec 06, 2022
Official implementations for various pre-training models of ERNIE-family, covering topics of Language Understanding & Generation, Multimodal Understanding & Generation, and beyond.

English|简体中文 ERNIE是百度开创性提出的基于知识增强的持续学习语义理解框架,该框架将大数据预训练与多源丰富知识相结合,通过持续学习技术,不断吸收海量文本数据中词汇、结构、语义等方面的知识,实现模型效果不断进化。ERNIE在累积 40 余个典型 NLP 任务取得 SOTA 效果,并在 G

5.4k Jan 03, 2023
Twewy-discord-chatbot - Build a Discord AI Chatbot that Speaks like Your Favorite Character

Build a Discord AI Chatbot that Speaks like Your Favorite Character! This is a Discord AI Chatbot that uses the Microsoft DialoGPT conversational mode

Lynn Zheng 231 Dec 30, 2022
Text-to-Speech for Belarusian language

title emoji colorFrom colorTo sdk app_file pinned Belarusian TTS 🐸 green green gradio app.py false Belarusian TTS 📢 🤖 Belarusian TTS (text-to-speec

Yurii Paniv 1 Nov 27, 2021