Revisiting Pre-trained Models for Chinese Natural Language Processing (Findings of EMNLP 2020)

Overview



GitHub

This repository contains the resources in our paper "Revisiting Pre-trained Models for Chinese Natural Language Processing", which will be published in "Findings of EMNLP". You can read our camera-ready paper through ACL Anthology or arXiv pre-print.

Revisiting Pre-trained Models for Chinese Natural Language Processing
Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin Wang, Guoping Hu

For resources other than MacBERT, please visit the following repositories:

More resources by HFL: https://github.com/ymcui/HFL-Anthology

News

2021/10/24 We propose the first pre-trained language model that specifically focusing on Chinese minority languages. Check:https://github.com/ymcui/Chinese-Minority-PLM

2021/7/21 由哈工大SCIR多位学者撰写的《自然语言处理:基于预训练模型的方法》已出版,欢迎大家选购,也可参与我们的赠书活动

[Nov 3, 2020] Pre-trained MacBERT models are available through direct Download or Quick Load. Use it as if you are using original BERT (except for it cannot perform the original MLM).

[Sep 15, 2020] Our paper "Revisiting Pre-Trained Models for Chinese Natural Language Processing" is accepted to Findings of EMNLP as a long paper.

Guide

Section Description
Introduction Introduction to MacBERT
Download Download links for MacBERT
Quick Load Learn how to quickly load our models through 🤗 Transformers
Results Results on several Chinese NLP datasets
FAQ Frequently Asked Questions
Citation Citation

Introduction

MacBERT is an improved BERT with novel MLM as correction pre-training task, which mitigates the discrepancy of pre-training and fine-tuning.

Instead of masking with [MASK] token, which never appears in the fine-tuning stage, we propose to use similar words for the masking purpose. A similar word is obtained by using Synonyms toolkit (Wang and Hu, 2017), which is based on word2vec (Mikolov et al., 2013) similarity calculations. If an N-gram is selected to mask, we will find similar words individually. In rare cases, when there is no similar word, we will degrade to use random word replacement.

Here is an example of our pre-training task.

Example
Original Sentence we use a language model to predict the probability of the next word.
MLM we use a language [M] to [M] ##di ##ct the pro [M] ##bility of the next word .
Whole word masking we use a language [M] to [M] [M] [M] the [M] [M] [M] of the next word .
N-gram masking we use a [M] [M] to [M] [M] [M] the [M] [M] [M] [M] [M] next word .
MLM as correction we use a text system to ca ##lc ##ulate the po ##si ##bility of the next word .

Except for the new pre-training task, we also incorporate the following techniques.

  • Whole Word Masking (WWM)
  • N-gram masking
  • Sentence-Order Prediction (SOP)

Note that our MacBERT can be directly replaced with the original BERT as there is no differences in the main neural architecture.

For more technical details, please check our paper: Revisiting Pre-trained Models for Chinese Natural Language Processing

Download

We mainly provide pre-trained MacBERT models in TensorFlow 1.x.

  • MacBERT-large, Chinese: 24-layer, 1024-hidden, 16-heads, 324M parameters
  • MacBERT-base, Chinese:12-layer, 768-hidden, 12-heads, 102M parameters
Model Google Drive iFLYTEK Cloud Size
MacBERT-large, Chinese TensorFlow TensorFlow(pw:3Yg3) 1.2G
MacBERT-base, Chinese TensorFlow TensorFlow(pw:E2cP) 383M

PyTorch/TensorFlow2 Version

If you need these models in PyTorch/TensorFlow2,

  1. Convert TensorFlow checkpoint into PyTorch/TensorFlow2, using 🤗 Transformers

  2. Download from https://huggingface.co/hfl

Steps: select one of the model in the page above → click "list all files in model" at the end of the model page → download bin/json files from the pop-up window.

Quick Load

With Huggingface-Transformers, the models above could be easily accessed and loaded through the following codes.

tokenizer = BertTokenizer.from_pretrained("MODEL_NAME")
model = BertModel.from_pretrained("MODEL_NAME")

**Notice: Please use BertTokenizer and BertModel for loading MacBERT models. **

The actual model and its MODEL_NAME are listed below.

Original Model MODEL_NAME
MacBERT-large hfl/chinese-macbert-large
MacBERT-base hfl/chinese-macbert-base

Results

We present the results of MacBERT on the following six tasks (please read our paper for other results).

To ensure the stability of the results, we run 10 times for each experiment and report the maximum and average scores (in brackets).

CMRC 2018

CMRC 2018 dataset is released by the Joint Laboratory of HIT and iFLYTEK Research. The model should answer the questions based on the given passage, which is identical to SQuAD. Evaluation metrics: EM / F1

Model Development Test Challenge #Params
BERT-base 65.5 (64.4) / 84.5 (84.0) 70.0 (68.7) / 87.0 (86.3) 18.6 (17.0) / 43.3 (41.3) 102M
BERT-wwm 66.3 (65.0) / 85.6 (84.7) 70.5 (69.1) / 87.4 (86.7) 21.0 (19.3) / 47.0 (43.9) 102M
BERT-wwm-ext 67.1 (65.6) / 85.7 (85.0) 71.4 (70.0) / 87.7 (87.0) 24.0 (20.0) / 47.3 (44.6) 102M
RoBERTa-wwm-ext 67.4 (66.5) / 87.2 (86.5) 72.6 (71.4) / 89.4 (88.8) 26.2 (24.6) / 51.0 (49.1) 102M
ELECTRA-base 68.4 (68.0) / 84.8 (84.6) 73.1 (72.7) / 87.1 (86.9) 22.6 (21.7) / 45.0 (43.8) 102M
MacBERT-base 68.5 (67.3) / 87.9 (87.1) 73.2 (72.4) / 89.5 (89.2) 30.2 (26.4) / 54.0 (52.2) 102M
ELECTRA-large 69.1 (68.2) / 85.2 (84.5) 73.9 (72.8) / 87.1 (86.6) 23.0 (21.6) / 44.2 (43.2) 324M
RoBERTa-wwm-ext-large 68.5 (67.6) / 88.4 (87.9) 74.2 (72.4) / 90.6 (90.0) 31.5 (30.1) / 60.1 (57.5) 324M
MacBERT-large 70.7 (68.6) / 88.9 (88.2) 74.8 (73.2) / 90.7 (90.1) 31.9 (29.6) / 60.2 (57.6) 324M

DRCD

DRCD is also a span-extraction machine reading comprehension dataset, released by Delta Research Center. The text is written in Traditional Chinese. Evaluation metrics: EM / F1

Model Development Test #Params
BERT-base 83.1 (82.7) / 89.9 (89.6) 82.2 (81.6) / 89.2 (88.8) 102M
BERT-wwm 84.3 (83.4) / 90.5 (90.2) 82.8 (81.8) / 89.7 (89.0) 102M
BERT-wwm-ext 85.0 (84.5) / 91.2 (90.9) 83.6 (83.0) / 90.4 (89.9) 102M
RoBERTa-wwm-ext 86.6 (85.9) / 92.5 (92.2) 85.6 (85.2) / 92.0 (91.7) 102M
ELECTRA-base 87.5 (87.0) / 92.5 (92.3) 86.9 (86.6) / 91.8 (91.7) 102M
MacBERT-base 89.4 (89.2) / 94.3 (94.1) 89.5 (88.7) / 93.8 (93.5) 102M
ELECTRA-large 88.8 (88.7) / 93.3 (93.2) 88.8 (88.2) / 93.6 (93.2) 324M
RoBERTa-wwm-ext-large 89.6 (89.1) / 94.8 (94.4) 89.6 (88.9) / 94.5 (94.1) 324M
MacBERT-large 91.2 (90.8) / 95.6 (95.3) 91.7 (90.9) / 95.6 (95.3) 324M

XNLI

We use XNLI data for testing the NLI task. Evaluation metrics: Accuracy

Model Development Test #Params
BERT-base 77.8 (77.4) 77.8 (77.5) 102M
BERT-wwm 79.0 (78.4) 78.2 (78.0) 102M
BERT-wwm-ext 79.4 (78.6) 78.7 (78.3) 102M
RoBERTa-wwm-ext 80.0 (79.2) 78.8 (78.3) 102M
ELECTRA-base 77.9 (77.0) 78.4 (77.8) 102M
MacBERT-base 80.3 (79.7) 79.3 (78.8) 102M
ELECTRA-large 81.5 (80.8) 81.0 (80.9) 324M
RoBERTa-wwm-ext-large 82.1 (81.3) 81.2 (80.6) 324M
MacBERT-large 82.4 (81.8) 81.3 (80.6) 324M

ChnSentiCorp

We use ChnSentiCorp data for testing sentiment analysis. Evaluation metrics: Accuracy

Model Development Test #Params
BERT-base 94.7 (94.3) 95.0 (94.7) 102M
BERT-wwm 95.1 (94.5) 95.4 (95.0) 102M
BERT-wwm-ext 95.4 (94.6) 95.3 (94.7) 102M
RoBERTa-wwm-ext 95.0 (94.6) 95.6 (94.8) 102M
ELECTRA-base 93.8 (93.0) 94.5 (93.5) 102M
MacBERT-base 95.2 (94.8) 95.6 (94.9) 102M
ELECTRA-large 95.2 (94.6) 95.3 (94.8) 324M
RoBERTa-wwm-ext-large 95.8 (94.9) 95.8 (94.9) 324M
MacBERT-large 95.7 (95.0) 95.9 (95.1) 324M

LCQMC

LCQMC is a sentence pair matching dataset, which could be seen as a binary classification task. Evaluation metrics: Accuracy

Model Development Test #Params
BERT 89.4 (88.4) 86.9 (86.4) 102M
BERT-wwm 89.4 (89.2) 87.0 (86.8) 102M
BERT-wwm-ext 89.6 (89.2) 87.1 (86.6) 102M
RoBERTa-wwm-ext 89.0 (88.7) 86.4 (86.1) 102M
ELECTRA-base 90.2 (89.8) 87.6 (87.3) 102M
MacBERT-base 89.5 (89.3) 87.0 (86.5) 102M
ELECTRA-large 90.7 (90.4) 87.3 (87.2) 324M
RoBERTa-wwm-ext-large 90.4 (90.0) 87.0 (86.8) 324M
MacBERT-large 90.6 (90.3) 87.6 (87.1) 324M

BQ Corpus

BQ Corpus is a sentence pair matching dataset, which could be seen as a binary classification task. Evaluation metrics: Accuracy

Model Development Test #Params
BERT 86.0 (85.5) 84.8 (84.6) 102M
BERT-wwm 86.1 (85.6) 85.2 (84.9) 102M
BERT-wwm-ext 86.4 (85.5) 85.3 (84.8) 102M
RoBERTa-wwm-ext 86.0 (85.4) 85.0 (84.6) 102M
ELECTRA-base 84.8 (84.7) 84.5 (84.0) 102M
MacBERT-base 86.0 (85.5) 85.2 (84.9) 102M
ELECTRA-large 86.7 (86.2) 85.1 (84.8) 324M
RoBERTa-wwm-ext-large 86.3 (85.7) 85.8 (84.9) 324M
MacBERT-large 86.2 (85.7) 85.6 (85.0) 324M

FAQ

Question 1: Do you have an English version of MacBERT?

A1: Sorry, we do not have English version of pre-trained MacBERT.

Question 2: How to use MacBERT?

A2: Use it as if you are using original BERT in the fine-tuning stage (just replace the checkpoint and config files). Also, you can perform further pre-training on our checkpoint with MLM/NSP/SOP objectives.

Question 3: Could you provide pre-training code for MacBERT?

A3: Sorry, we cannot provide source code at the moment, and maybe we'll release them in the future, but there is no guarantee.

Question 4: How about releasing the pre-training data?

A4: We have no right to redistribute these data, which will have potential legal violations.

Question 5: Will you release pre-trained MacBERT on a larger data?

A5: Currently, we have no plans on this.

Citation

If you find our resource or paper is useful, please consider including the following citation in your paper.

@inproceedings{cui-etal-2020-revisiting,
    title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing",
    author = "Cui, Yiming  and
      Che, Wanxiang  and
      Liu, Ting  and
      Qin, Bing  and
      Wang, Shijin  and
      Hu, Guoping",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58",
    pages = "657--668",
}

Or:

@journal{cui-etal-2021-pretrain,
  title={Pre-Training with Whole Word Masking for Chinese BERT},
  author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing},
  journal={IEEE Transactions on Audio, Speech and Language Processing},
  year={2021},
  url={https://ieeexplore.ieee.org/document/9599397},
  doi={10.1109/TASLP.2021.3124365},
 }

Acknowledgment

The first author would like to thank Google TensorFlow Research Cloud (TFRC) Program.

Issues

Before you submit an issue:

  • You are advised to read FAQ first before you submit an issue.
  • Repetitive and irrelevant issues will be ignored and closed by [stable-bot](stale · GitHub Marketplace). Thank you for your understanding and support.
  • We cannot acommodate EVERY request, and thus please bare in mind that there is no guarantee that your request will be met.
  • Always be polite when you submit an issue.
Owner
Yiming Cui
NLP Researcher. Mainly interested in Machine Reading Comprehension, Question Answering, Pre-trained Language Model, etc.
Yiming Cui
A method for cleaning and classifying text using transformers.

NLP Translation and Classification The repository contains a method for classifying and cleaning text using NLP transformers. Overview The input data

Ray Chamidullin 0 Nov 15, 2022
A 30000+ Chinese MRC dataset - Delta Reading Comprehension Dataset

Delta Reading Comprehension Dataset 台達閱讀理解資料集 Delta Reading Comprehension Dataset (DRCD) 屬於通用領域繁體中文機器閱讀理解資料集。 本資料集期望成為適用於遷移學習之標準中文閱讀理解資料集。 本資料集從2,108篇

272 Dec 15, 2022
Constituency Tree Labeling Tool

Constituency Tree Labeling Tool The purpose of this package is to solve the constituency tree labeling problem. Look from the dataset labeled by NLTK,

张宇 6 Dec 20, 2022
自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器

ja-timex 自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器 概要 ja-timex は、現代日本語で書かれた自然文に含まれる時間情報表現を抽出しTIMEX3と呼ばれるアノテーション仕様に変換することで、プログラムが利用できるような形に規格化するルールベースの解析器です。

Yuki Okuda 116 Nov 09, 2022
COVID-19 Related NLP Papers

COVID-19 outbreak has become a global pandemic. NLP researchers are fighting the epidemic in their own way.

xcfeng 28 Oct 30, 2022
Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP This repository maintains some utility scripts for retrieving and preprocessing Wikipedia text

Masatoshi Suzuki 44 Oct 19, 2022
Host your own GPT-3 Discord bot

GPT3 Discord Bot Host your own GPT-3 Discord bot i'd host and make the bot invitable myself, however GPT3 terms of service prohibit public use of GPT3

[something hillarious here] 8 Jan 07, 2023
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

THUNLP-MT 46 Dec 15, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 04, 2023
This repo stores the codes for topic modeling on palliative care journals.

This repo stores the codes for topic modeling on palliative care journals. Data Preparation You first need to download the journal papers. bash 1_down

3 Dec 20, 2022
Kurumi ChatBot

KurumiChatBot Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @TokisakiChatB

Yoga Pranata 3 Jun 28, 2022
Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT.

KR-BERT-SimCSE Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT. Training Unsupervised python train_unsupervised.py --mi

Jeong Ukjae 27 Dec 12, 2022
Grading tools for Advanced NLP (11-711)Grading tools for Advanced NLP (11-711)

Grading tools for Advanced NLP (11-711) Installation You'll need docker and unzip to use this repo. For docker, visit the official guide to get starte

Hao Zhu 2 Sep 27, 2022
Machine learning models from Singapore's NLP research community

SG-NLP Machine learning models from Singapore's natural language processing (NLP) research community. sgnlp is a Python package that allows you to eas

AI Singapore | AI Makerspace 21 Dec 17, 2022
Speach Recognitions

easy_meeting Добро пожаловать в интерфейс сервиса автопротоколирования совещаний Easy Meeting. Website - http://cf5c-62-192-251-83.ngrok.io/ Принципиа

Maksim 3 Feb 18, 2022
Module for automatic summarization of text documents and HTML pages.

Automatic text summarizer Simple library and command line utility for extracting summary from HTML pages or plain texts. The package also contains sim

Mišo Belica 3k Jan 08, 2023
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

Tencent 633 Dec 28, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
News-Articles-and-Essays - NLP (Topic Modeling and Clustering)

NLP T5 Project proposal Topic Modeling and Clustering of News-Articles-and-Essays Students: Nasser Alshehri Abdullah Bushnag Abdulrhman Alqurashi OVER

2 Jan 18, 2022