Revisiting Pre-trained Models for Chinese Natural Language Processing (Findings of EMNLP 2020)

Overview



GitHub

This repository contains the resources in our paper "Revisiting Pre-trained Models for Chinese Natural Language Processing", which will be published in "Findings of EMNLP". You can read our camera-ready paper through ACL Anthology or arXiv pre-print.

Revisiting Pre-trained Models for Chinese Natural Language Processing
Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin Wang, Guoping Hu

For resources other than MacBERT, please visit the following repositories:

More resources by HFL: https://github.com/ymcui/HFL-Anthology

News

2021/10/24 We propose the first pre-trained language model that specifically focusing on Chinese minority languages. Check:https://github.com/ymcui/Chinese-Minority-PLM

2021/7/21 由哈工大SCIR多位学者撰写的《自然语言处理:基于预训练模型的方法》已出版,欢迎大家选购,也可参与我们的赠书活动

[Nov 3, 2020] Pre-trained MacBERT models are available through direct Download or Quick Load. Use it as if you are using original BERT (except for it cannot perform the original MLM).

[Sep 15, 2020] Our paper "Revisiting Pre-Trained Models for Chinese Natural Language Processing" is accepted to Findings of EMNLP as a long paper.

Guide

Section Description
Introduction Introduction to MacBERT
Download Download links for MacBERT
Quick Load Learn how to quickly load our models through 🤗 Transformers
Results Results on several Chinese NLP datasets
FAQ Frequently Asked Questions
Citation Citation

Introduction

MacBERT is an improved BERT with novel MLM as correction pre-training task, which mitigates the discrepancy of pre-training and fine-tuning.

Instead of masking with [MASK] token, which never appears in the fine-tuning stage, we propose to use similar words for the masking purpose. A similar word is obtained by using Synonyms toolkit (Wang and Hu, 2017), which is based on word2vec (Mikolov et al., 2013) similarity calculations. If an N-gram is selected to mask, we will find similar words individually. In rare cases, when there is no similar word, we will degrade to use random word replacement.

Here is an example of our pre-training task.

Example
Original Sentence we use a language model to predict the probability of the next word.
MLM we use a language [M] to [M] ##di ##ct the pro [M] ##bility of the next word .
Whole word masking we use a language [M] to [M] [M] [M] the [M] [M] [M] of the next word .
N-gram masking we use a [M] [M] to [M] [M] [M] the [M] [M] [M] [M] [M] next word .
MLM as correction we use a text system to ca ##lc ##ulate the po ##si ##bility of the next word .

Except for the new pre-training task, we also incorporate the following techniques.

  • Whole Word Masking (WWM)
  • N-gram masking
  • Sentence-Order Prediction (SOP)

Note that our MacBERT can be directly replaced with the original BERT as there is no differences in the main neural architecture.

For more technical details, please check our paper: Revisiting Pre-trained Models for Chinese Natural Language Processing

Download

We mainly provide pre-trained MacBERT models in TensorFlow 1.x.

  • MacBERT-large, Chinese: 24-layer, 1024-hidden, 16-heads, 324M parameters
  • MacBERT-base, Chinese:12-layer, 768-hidden, 12-heads, 102M parameters
Model Google Drive iFLYTEK Cloud Size
MacBERT-large, Chinese TensorFlow TensorFlow(pw:3Yg3) 1.2G
MacBERT-base, Chinese TensorFlow TensorFlow(pw:E2cP) 383M

PyTorch/TensorFlow2 Version

If you need these models in PyTorch/TensorFlow2,

  1. Convert TensorFlow checkpoint into PyTorch/TensorFlow2, using 🤗 Transformers

  2. Download from https://huggingface.co/hfl

Steps: select one of the model in the page above → click "list all files in model" at the end of the model page → download bin/json files from the pop-up window.

Quick Load

With Huggingface-Transformers, the models above could be easily accessed and loaded through the following codes.

tokenizer = BertTokenizer.from_pretrained("MODEL_NAME")
model = BertModel.from_pretrained("MODEL_NAME")

**Notice: Please use BertTokenizer and BertModel for loading MacBERT models. **

The actual model and its MODEL_NAME are listed below.

Original Model MODEL_NAME
MacBERT-large hfl/chinese-macbert-large
MacBERT-base hfl/chinese-macbert-base

Results

We present the results of MacBERT on the following six tasks (please read our paper for other results).

To ensure the stability of the results, we run 10 times for each experiment and report the maximum and average scores (in brackets).

CMRC 2018

CMRC 2018 dataset is released by the Joint Laboratory of HIT and iFLYTEK Research. The model should answer the questions based on the given passage, which is identical to SQuAD. Evaluation metrics: EM / F1

Model Development Test Challenge #Params
BERT-base 65.5 (64.4) / 84.5 (84.0) 70.0 (68.7) / 87.0 (86.3) 18.6 (17.0) / 43.3 (41.3) 102M
BERT-wwm 66.3 (65.0) / 85.6 (84.7) 70.5 (69.1) / 87.4 (86.7) 21.0 (19.3) / 47.0 (43.9) 102M
BERT-wwm-ext 67.1 (65.6) / 85.7 (85.0) 71.4 (70.0) / 87.7 (87.0) 24.0 (20.0) / 47.3 (44.6) 102M
RoBERTa-wwm-ext 67.4 (66.5) / 87.2 (86.5) 72.6 (71.4) / 89.4 (88.8) 26.2 (24.6) / 51.0 (49.1) 102M
ELECTRA-base 68.4 (68.0) / 84.8 (84.6) 73.1 (72.7) / 87.1 (86.9) 22.6 (21.7) / 45.0 (43.8) 102M
MacBERT-base 68.5 (67.3) / 87.9 (87.1) 73.2 (72.4) / 89.5 (89.2) 30.2 (26.4) / 54.0 (52.2) 102M
ELECTRA-large 69.1 (68.2) / 85.2 (84.5) 73.9 (72.8) / 87.1 (86.6) 23.0 (21.6) / 44.2 (43.2) 324M
RoBERTa-wwm-ext-large 68.5 (67.6) / 88.4 (87.9) 74.2 (72.4) / 90.6 (90.0) 31.5 (30.1) / 60.1 (57.5) 324M
MacBERT-large 70.7 (68.6) / 88.9 (88.2) 74.8 (73.2) / 90.7 (90.1) 31.9 (29.6) / 60.2 (57.6) 324M

DRCD

DRCD is also a span-extraction machine reading comprehension dataset, released by Delta Research Center. The text is written in Traditional Chinese. Evaluation metrics: EM / F1

Model Development Test #Params
BERT-base 83.1 (82.7) / 89.9 (89.6) 82.2 (81.6) / 89.2 (88.8) 102M
BERT-wwm 84.3 (83.4) / 90.5 (90.2) 82.8 (81.8) / 89.7 (89.0) 102M
BERT-wwm-ext 85.0 (84.5) / 91.2 (90.9) 83.6 (83.0) / 90.4 (89.9) 102M
RoBERTa-wwm-ext 86.6 (85.9) / 92.5 (92.2) 85.6 (85.2) / 92.0 (91.7) 102M
ELECTRA-base 87.5 (87.0) / 92.5 (92.3) 86.9 (86.6) / 91.8 (91.7) 102M
MacBERT-base 89.4 (89.2) / 94.3 (94.1) 89.5 (88.7) / 93.8 (93.5) 102M
ELECTRA-large 88.8 (88.7) / 93.3 (93.2) 88.8 (88.2) / 93.6 (93.2) 324M
RoBERTa-wwm-ext-large 89.6 (89.1) / 94.8 (94.4) 89.6 (88.9) / 94.5 (94.1) 324M
MacBERT-large 91.2 (90.8) / 95.6 (95.3) 91.7 (90.9) / 95.6 (95.3) 324M

XNLI

We use XNLI data for testing the NLI task. Evaluation metrics: Accuracy

Model Development Test #Params
BERT-base 77.8 (77.4) 77.8 (77.5) 102M
BERT-wwm 79.0 (78.4) 78.2 (78.0) 102M
BERT-wwm-ext 79.4 (78.6) 78.7 (78.3) 102M
RoBERTa-wwm-ext 80.0 (79.2) 78.8 (78.3) 102M
ELECTRA-base 77.9 (77.0) 78.4 (77.8) 102M
MacBERT-base 80.3 (79.7) 79.3 (78.8) 102M
ELECTRA-large 81.5 (80.8) 81.0 (80.9) 324M
RoBERTa-wwm-ext-large 82.1 (81.3) 81.2 (80.6) 324M
MacBERT-large 82.4 (81.8) 81.3 (80.6) 324M

ChnSentiCorp

We use ChnSentiCorp data for testing sentiment analysis. Evaluation metrics: Accuracy

Model Development Test #Params
BERT-base 94.7 (94.3) 95.0 (94.7) 102M
BERT-wwm 95.1 (94.5) 95.4 (95.0) 102M
BERT-wwm-ext 95.4 (94.6) 95.3 (94.7) 102M
RoBERTa-wwm-ext 95.0 (94.6) 95.6 (94.8) 102M
ELECTRA-base 93.8 (93.0) 94.5 (93.5) 102M
MacBERT-base 95.2 (94.8) 95.6 (94.9) 102M
ELECTRA-large 95.2 (94.6) 95.3 (94.8) 324M
RoBERTa-wwm-ext-large 95.8 (94.9) 95.8 (94.9) 324M
MacBERT-large 95.7 (95.0) 95.9 (95.1) 324M

LCQMC

LCQMC is a sentence pair matching dataset, which could be seen as a binary classification task. Evaluation metrics: Accuracy

Model Development Test #Params
BERT 89.4 (88.4) 86.9 (86.4) 102M
BERT-wwm 89.4 (89.2) 87.0 (86.8) 102M
BERT-wwm-ext 89.6 (89.2) 87.1 (86.6) 102M
RoBERTa-wwm-ext 89.0 (88.7) 86.4 (86.1) 102M
ELECTRA-base 90.2 (89.8) 87.6 (87.3) 102M
MacBERT-base 89.5 (89.3) 87.0 (86.5) 102M
ELECTRA-large 90.7 (90.4) 87.3 (87.2) 324M
RoBERTa-wwm-ext-large 90.4 (90.0) 87.0 (86.8) 324M
MacBERT-large 90.6 (90.3) 87.6 (87.1) 324M

BQ Corpus

BQ Corpus is a sentence pair matching dataset, which could be seen as a binary classification task. Evaluation metrics: Accuracy

Model Development Test #Params
BERT 86.0 (85.5) 84.8 (84.6) 102M
BERT-wwm 86.1 (85.6) 85.2 (84.9) 102M
BERT-wwm-ext 86.4 (85.5) 85.3 (84.8) 102M
RoBERTa-wwm-ext 86.0 (85.4) 85.0 (84.6) 102M
ELECTRA-base 84.8 (84.7) 84.5 (84.0) 102M
MacBERT-base 86.0 (85.5) 85.2 (84.9) 102M
ELECTRA-large 86.7 (86.2) 85.1 (84.8) 324M
RoBERTa-wwm-ext-large 86.3 (85.7) 85.8 (84.9) 324M
MacBERT-large 86.2 (85.7) 85.6 (85.0) 324M

FAQ

Question 1: Do you have an English version of MacBERT?

A1: Sorry, we do not have English version of pre-trained MacBERT.

Question 2: How to use MacBERT?

A2: Use it as if you are using original BERT in the fine-tuning stage (just replace the checkpoint and config files). Also, you can perform further pre-training on our checkpoint with MLM/NSP/SOP objectives.

Question 3: Could you provide pre-training code for MacBERT?

A3: Sorry, we cannot provide source code at the moment, and maybe we'll release them in the future, but there is no guarantee.

Question 4: How about releasing the pre-training data?

A4: We have no right to redistribute these data, which will have potential legal violations.

Question 5: Will you release pre-trained MacBERT on a larger data?

A5: Currently, we have no plans on this.

Citation

If you find our resource or paper is useful, please consider including the following citation in your paper.

@inproceedings{cui-etal-2020-revisiting,
    title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing",
    author = "Cui, Yiming  and
      Che, Wanxiang  and
      Liu, Ting  and
      Qin, Bing  and
      Wang, Shijin  and
      Hu, Guoping",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58",
    pages = "657--668",
}

Or:

@journal{cui-etal-2021-pretrain,
  title={Pre-Training with Whole Word Masking for Chinese BERT},
  author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing},
  journal={IEEE Transactions on Audio, Speech and Language Processing},
  year={2021},
  url={https://ieeexplore.ieee.org/document/9599397},
  doi={10.1109/TASLP.2021.3124365},
 }

Acknowledgment

The first author would like to thank Google TensorFlow Research Cloud (TFRC) Program.

Issues

Before you submit an issue:

  • You are advised to read FAQ first before you submit an issue.
  • Repetitive and irrelevant issues will be ignored and closed by [stable-bot](stale · GitHub Marketplace). Thank you for your understanding and support.
  • We cannot acommodate EVERY request, and thus please bare in mind that there is no guarantee that your request will be met.
  • Always be polite when you submit an issue.
Owner
Yiming Cui
NLP Researcher. Mainly interested in Machine Reading Comprehension, Question Answering, Pre-trained Language Model, etc.
Yiming Cui
This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

Graph4AI 230 Nov 22, 2022
A Chinese to English Neural Model Translation Project

ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C

Zhenbang Feng 29 Nov 26, 2022
Visual Automata is a Python 3 library built as a wrapper for Caleb Evans' Automata library to add more visualization features.

Visual Automata Copyright 2021 Lewi Lie Uberg Released under the MIT license Visual Automata is a Python 3 library built as a wrapper for Caleb Evans'

Lewi Uberg 55 Nov 17, 2022
JaQuAD: Japanese Question Answering Dataset

JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension (2022, Skelter Labs)

SkelterLabs 84 Dec 27, 2022
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Hiroki Nakayama 1.5k Dec 05, 2022
Maix Speech AI lib, including ASR, chat, TTS etc.

Maix-Speech 中文 | English Brief Now only support Chinese, See 中文 Build Clone code by: git clone https://github.com/sipeed/Maix-Speech Compile x86x64 c

Sipeed 267 Dec 25, 2022
Use the state-of-the-art m2m100 to translate large data on CPU/GPU/TPU. Super Easy!

Easy-Translate is a script for translating large text files in your machine using the M2M100 models from Facebook/Meta AI. We also privide a script fo

Iker García-Ferrero 41 Dec 15, 2022
✨Fast Coreference Resolution in spaCy with Neural Networks

✨ NeuralCoref 4.0: Coreference Resolution in spaCy with Neural Networks. NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolv

Hugging Face 2.6k Jan 04, 2023
Pretrained Japanese BERT models

Pretrained Japanese BERT models This is a repository of pretrained Japanese BERT models. The models are available in Transformers by Hugging Face. Mod

Inui Laboratory 387 Dec 30, 2022
Score-Based Point Cloud Denoising (ICCV'21)

Score-Based Point Cloud Denoising (ICCV'21) [Paper] https://arxiv.org/abs/2107.10981 Installation Recommended Environment The code has been tested in

Shitong Luo 79 Dec 26, 2022
Training code for Korean multi-class sentiment analysis

KoSentimentAnalysis Bert implementation for the Korean multi-class sentiment analysis 왜 한국어 감정 다중분류 모델은 거의 없는 것일까?에서 시작된 프로젝트 Environment: Pytorch, Da

Donghoon Shin 3 Dec 02, 2022
Meta learning algorithms to train cross-lingual NLI (multi-task) models

Meta learning algorithms to train cross-lingual NLI (multi-task) models

M.Hassan Mojab 4 Nov 20, 2022
Code for the paper "Language Models are Unsupervised Multitask Learners"

Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner

OpenAI 16.1k Jan 08, 2023
Deep learning for NLP crash course at ABBYY.

Deep NLP Course at ABBYY Deep learning for NLP crash course at ABBYY. Suggested textbook: Neural Network Methods in Natural Language Processing by Yoa

Dan Anastasyev 597 Dec 18, 2022
Weaviate demo with the text2vec-openai module

Weaviate demo with the text2vec-openai module This repository contains an example of how to use the Weaviate text2vec-openai module. When using this d

SeMI Technologies 11 Nov 11, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 358 Dec 24, 2022
This is a Prototype of an Ai ChatBot "Tea and Coffee Supplier" using python.

Ai-ChatBot-Python A chatbot is an intelligent system which can hold a conversation with a human using natural language in real time. Due to the rise o

1 Oct 30, 2021
Transformer Based Korean Sentence Spacing Corrector

TKOrrector Transformer Based Korean Sentence Spacing Corrector License Summary This solution is made available under Apache 2 license. See the LICENSE

Paul Hyung Yuel Kim 3 Apr 18, 2022
Code for PED: DETR For (Crowd) Pedestrian Detection

Code for PED: DETR For (Crowd) Pedestrian Detection

36 Sep 13, 2022
AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

凌逆战 75 Dec 05, 2022