Visual Automata is a Python 3 library built as a wrapper for Caleb Evans' Automata library to add more visualization features.

Overview

Latest Version Supported Python versions Downloads

Visual Automata

Copyright 2021 Lewi Lie Uberg
Released under the MIT license

Visual Automata is a Python 3 library built as a wrapper for Caleb Evans' Automata library to add more visualization features.

Contents

Prerequisites

pip install automata-lib
pip install pandas
pip install graphviz
pip install colormath
pip install jupyterlab

Installing

pip install visual-automata

VisualDFA

Importing

Import needed classes.

from automata.fa.dfa import DFA

from visual_automata.fa.dfa import VisualDFA

Instantiating DFAs

Define an automata-lib DFA that can accept any string ending with 00 or 11.

dfa = VisualDFA(
    states={"q0", "q1", "q2", "q3", "q4"},
    input_symbols={"0", "1"},
    transitions={
        "q0": {"0": "q3", "1": "q1"},
        "q1": {"0": "q3", "1": "q2"},
        "q2": {"0": "q3", "1": "q2"},
        "q3": {"0": "q4", "1": "q1"},
        "q4": {"0": "q4", "1": "q1"},
    },
    initial_state="q0",
    final_states={"q2", "q4"},
)

Converting

An automata-lib DFA can be converted to a VisualDFA.

Define an automata-lib DFA that can accept any string ending with 00 or 11.

dfa = DFA(
    states={"q0", "q1", "q2", "q3", "q4"},
    input_symbols={"0", "1"},
    transitions={
        "q0": {"0": "q3", "1": "q1"},
        "q1": {"0": "q3", "1": "q2"},
        "q2": {"0": "q3", "1": "q2"},
        "q3": {"0": "q4", "1": "q1"},
        "q4": {"0": "q4", "1": "q1"},
    },
    initial_state="q0",
    final_states={"q2", "q4"},
)

Convert automata-lib DFA to VisualDFA.

dfa = VisualDFA(dfa)

Minimal-DFA

Creates a minimal DFA which accepts the same inputs as the old one. Unreachable states are removed and equivalent states are merged. States are renamed by default.

new_dfa = VisualDFA(
    states={'q0', 'q1', 'q2'},
    input_symbols={'0', '1'},
    transitions={
        'q0': {'0': 'q0', '1': 'q1'},
        'q1': {'0': 'q0', '1': 'q2'},
        'q2': {'0': 'q2', '1': 'q1'}
    },
    initial_state='q0',
    final_states={'q1'}
)
new_dfa.table
      0    1
→q0  q0  *q1
*q1  q0   q2
q2   q2  *q1
new_dfa.show_diagram()

alt text

minimal_dfa = VisualDFA.minify(new_dfa)
minimal_dfa.show_diagram()

alt text

minimal_dfa.table
                0        1
→{q0,q2}  {q0,q2}      *q1
*q1       {q0,q2}  {q0,q2}

Transition Table

Outputs the transition table for the given DFA.

dfa.table
       0    1
→q0   q3   q1
q1    q3  *q2
*q2   q3  *q2
q3   *q4   q1
*q4  *q4   q1

Check input strings

1001 does not end with 00 or 11, and is therefore Rejected

dfa.input_check("1001")
          [Rejected]                         
Step: Current state: Input symbol: New state:
1                →q0             1         q1
2                 q1             0         q3
3                 q3             0        *q4
4                *q4             1         q1

10011 does end with 11, and is therefore Accepted

dfa.input_check("10011")
          [Accepted]                         
Step: Current state: Input symbol: New state:
1                →q0             1         q1
2                 q1             0         q3
3                 q3             0        *q4
4                *q4             1         q1
5                 q1             1        *q2

Show Diagram

For IPython dfa.show_diagram() may be used.
For a python script dfa.show_diagram(view=True) may be used to automatically view the graph as a PDF file.

dfa.show_diagram()

alt text

The show_diagram method also accepts input strings, and will return a graph with gradient red arrows for Rejected results, and gradient green arrows for Accepted results. It will also display a table with transitions states stepwise. The steps in this table will correspond with the [number] over each traversed arrow.

Please note that for visual purposes additional arrows are added if a transition is traversed more than once.

dfa.show_diagram("1001")
          [Rejected]                         
Step: Current state: Input symbol: New state:
1                →q0             1         q1
2                 q1             0         q3
3                 q3             0        *q4
4                *q4             1         q1

alt text

dfa.show_diagram("10011")
          [Accepted]                         
Step: Current state: Input symbol: New state:
1                →q0             1         q1
2                 q1             0         q3
3                 q3             0        *q4
4                *q4             1         q1
5                 q1             1        *q2

alt text

Authors

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Acknowledgments

You might also like...
An open-source NLP research library, built on PyTorch.
An open-source NLP research library, built on PyTorch.

An Apache 2.0 NLP research library, built on PyTorch, for developing state-of-the-art deep learning models on a wide variety of linguistic tasks. Quic

An open-source NLP research library, built on PyTorch.
An open-source NLP research library, built on PyTorch.

An Apache 2.0 NLP research library, built on PyTorch, for developing state-of-the-art deep learning models on a wide variety of linguistic tasks. Quic

A deep learning-based translation library built on Huggingface transformers

DL Translate A deep learning-based translation library built on Huggingface transformers and Facebook's mBART-Large 💻 GitHub Repository 📚 Documentat

Natural Language Processing library built with AllenNLP 🌲🌱
Natural Language Processing library built with AllenNLP 🌲🌱

Custom Natural Language Processing with big and small models 🌲🌱

A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.

Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It

This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

A pytorch implementation of the ACL2019 paper
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

Code for paper "Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features"

Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features Train python main.py --dataset brazil-flights C

An easy to use, user-friendly and efficient code for extracting OpenAI CLIP (Global/Grid) features from image and text respectively.

Extracting OpenAI CLIP (Global/Grid) Features from Image and Text This repo aims at providing an easy to use and efficient code for extracting image &

Comments
  • FrozenNFA constructor attempts to call deepcopy on frozendicts

    FrozenNFA constructor attempts to call deepcopy on frozendicts

    The VisualNFA constructor attempts to create a deep copy of the passed nfa, especially the transitions dictionary: https://github.com/lewiuberg/visual-automata/blob/3ea0cdc4de9d3919250919b70fbc036d75120a85/visual_automata/fa/nfa.py#L469

    The deepcopy method is monkeypatched onto dict via curse: https://github.com/lewiuberg/visual-automata/blob/3ea0cdc4de9d3919250919b70fbc036d75120a85/visual_automata/fa/nfa.py#L32

    However, automata-lib 7.0.1 returns a frozendict from the frozendict package instead, so the method call fails. It is not clear if copying the frozendict is at all necessary; deepcopy returns the object as-is.

    MRE

    Using most recent versions:

    • automata-lib 7.0.1
    • visual_automata 1.1.1
    from automata.fa.nfa import NFA
    from visual_automata.fa.nfa import VisualNFA
    
    nfa = NFA(states={"q0"}, input_symbols={"i0"}, transitions={"q0": {"i0": {"q0"}}}, initial_state="q0",
              final_states={"q0"})
    VisualNFA(nfa).show_diagram(view=True)
    

    Expected Behavior

    The automaton is shown.

    Actual Behavior

    Traceback (most recent call last):
      File "/path/to/scratch_1.py", line 6, in <module>
        VisualNFA(nfa).show_diagram(view=True)
      File "/path/to/site-packages/visual_automata/fa/nfa.py", line 619, in show_diagram
        all_transitions_pairs = self._transitions_pairs(self.nfa.transitions)
      File "/path/to/site-packages/visual_automata/fa/nfa.py", line 469, in _transitions_pairs
        all_transitions = all_transitions.deepcopy()
    AttributeError: 'frozendict.frozendict' object has no attribute 'deepcopy'
    
    opened by no-preserve-root 3
  • VisualDFA constructor implicitly checks wrapped automaton cardinality

    VisualDFA constructor implicitly checks wrapped automaton cardinality

    The VisualDFA constructor checks the dfa parameter using https://github.com/lewiuberg/visual-automata/blob/3ea0cdc4de9d3919250919b70fbc036d75120a85/visual_automata/fa/dfa.py#L34

    This checks if dfa is truthy. Since the DFA class defines a __len__ method (and no __bool__), is is truthy iff len(dfa) != 0. Unfortunately, the length checks the dfa's cardinality, i.e., the size if the input language. For infinite-language DFAs, an exception is then raised. As a result, infinite DFAs cannot be visualized.

    This could be fixed by testing if dfa is None. VisualNFA is not affected since NFA does not define a __len__ method at the moment, but would fail if a similar method would be added to NFA.

    MRE

    Using most recent versions:

    • automata-lib 7.0.1
    • visual_automata 1.1.1
    from automata.fa.dfa import DFA
    from visual_automata.fa.dfa import VisualDFA
    
    dfa = DFA(states={"q0"}, input_symbols={"i0"}, transitions={"q0": {"i0": "q0"}}, initial_state="q0",
              final_states={"q0"})
    VisualDFA(dfa).show_diagram(view=True)
    

    Expected Behavior

    The automaton is shown.

    Actual Behavior

    Traceback (most recent call last):
      File "/path/to/scratch_1.py", line 6, in <module>
        VisualDFA(dfa).show_diagram(view=True)
      File "/path/to/site-packages/visual_automata/fa/dfa.py", line 34, in __init__
        if dfa:
      File "/path/to/site-packages/automata/fa/dfa.py", line 160, in __len__
        return self.cardinality()
      File "/path/to/site-packages/automata/fa/dfa.py", line 792, in cardinality
        raise exceptions.InfiniteLanguageException("The language represented by the DFA is infinite.")
    automata.base.exceptions.InfiniteLanguageException: The language represented by the DFA is infinite.
    

    Workaround

    Manually copying the automaton works:

    VisualDFA(states=dfa.states, input_symbols=dfa.input_symbols, transitions=dfa.transitions,
              initial_state=dfa.initial_state, final_states=dfa.final_states).show_diagram(view=True)
    
    opened by no-preserve-root 1
Releases(1093bea)
Owner
Lewi Uberg
Lewi Uberg
A BERT-based reverse dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end / back-end 임용

94 Dec 08, 2022
An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations

FantasyBert English | 中文 Introduction An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations. You can imp

Fan 137 Oct 26, 2022
Some embedding layer implementation using ivy library

ivy-manual-embeddings Some embedding layer implementation using ivy library. Just for fun. It is based on NYCTaxiFare dataset from kaggle (cut down to

Ishtiaq Hussain 2 Feb 10, 2022
Python bindings to the dutch NLP tool Frog (pos tagger, lemmatiser, NER tagger, morphological analysis, shallow parser, dependency parser)

Frog for Python This is a Python binding to the Natural Language Processing suite Frog. Frog is intended for Dutch and performs part-of-speech tagging

Maarten van Gompel 46 Dec 14, 2022
Examples of using sparse attention, as in "Generating Long Sequences with Sparse Transformers"

Status: Archive (code is provided as-is, no updates expected) Update August 2020: For an example repository that achieves state-of-the-art modeling pe

OpenAI 1.3k Dec 28, 2022
Backend for the Autocomplete platform. An AI assisted coding platform.

Introduction A custom predictor allows you to deploy your own prediction implementation, useful when the existing serving implementations don't fit yo

Tatenda Christopher Chinyamakobvu 1 Jan 31, 2022
Opal-lang - A WIP programming language based on Python

thanks to aphitorite for the beautiful logo! opal opal is a WIP transcompiled pr

3 Nov 04, 2022
A raytrace framework using taichi language

ti-raytrace The code use Taichi programming language Current implement acceleration lvbh disney brdf How to run First config your anaconda workspace,

蕉太狼 73 Dec 11, 2022
auto_code_complete is a auto word-completetion program which allows you to customize it on your need

auto_code_complete v1.3 purpose and usage auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the m

RUO 2 Feb 22, 2022
L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources.

L3Cube-MahaCorpus L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources. We expand the existing Marathi monolingual

21 Dec 17, 2022
Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

ICTNLP 29 Oct 16, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 227 Jan 02, 2023
Japanese NLP Library

Japanese NLP Library Back to Home Contents 1 Requirements 1.1 Links 1.2 Install 1.3 History 2 Libraries and Modules 2.1 Tokenize jTokenize.py 2.2 Cabo

Pulkit Kathuria 144 Dec 27, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 02, 2023
ConvBERT: Improving BERT with Span-based Dynamic Convolution

ConvBERT Introduction In this repo, we introduce a new architecture ConvBERT for pre-training based language model. The code is tested on a V100 GPU.

YITUTech 237 Dec 10, 2022
This project deals with a simplified version of a more general problem of Aspect Based Sentiment Analysis.

Aspect_Based_Sentiment_Extraction Created on: 5th Jan, 2022. This project deals with an important field of Natural Lnaguage Processing - Aspect Based

Naman Rastogi 4 Jan 01, 2023
Protein Language Model

ProteinLM We pretrain protein language model based on Megatron-LM framework, and then evaluate the pretrained model results on TAPE (Tasks Assessing P

THUDM 77 Dec 27, 2022
A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code or write code yourself

Scriptfab - What is it? A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code

DevNugget 3 Jul 28, 2021
A 10000+ hours dataset for Chinese speech recognition

A 10000+ hours dataset for Chinese speech recognition

309 Dec 16, 2022
Fuzzy String Matching in Python

FuzzyWuzzy Fuzzy string matching like a boss. It uses Levenshtein Distance to calculate the differences between sequences in a simple-to-use package.

SeatGeek 8.8k Jan 01, 2023