Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

Overview

CIRPLANT

This repository contains the code and pre-trained models for Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

For details please see our ICCV 2021 paper - Image Retrieval on Real-life Images with Pre-trained Vision-and-Language Models.

Demo image from CIRR data

If you find this repository useful, we would appreciate it if you could give us a star.

You are currently viewing the code & model repository. For more information, see our Project homepage.

Introduction

CIRPLANT is a transformer based model that leverages rich pre-trained vision-and-language (V&L) knowledge for modifying visual features conditioned on natural language. To the best of our knowledge, this is the first attempt in repurposing a V&L pre-trained (VLP) model for composed image retrieval- a task that requires language-conditioned image feature modification.

Our intention is to extend current methods to the open-domain. Together with the release of the CIRR dataset, we hope this work can inspire further research on composed image retrieval

Installation & Dataset Preparation

Check INSTALL.md for installation instructions.

Training

To train the model and reproduce our published results on CIRR:

python trainval_oscar.py --dataset cirr --usefeat nlvr-resnet152_w_empty --max_epochs 300 --model CIRPLANT-img --model_type 'bert' --model_name_or_path data/Oscar_pretrained_models/base-vg-labels/ep_107_1192087 --task_name cirr --gpus 1 --img_feature_dim 2054 --max_img_seq_length 1 --model_type bert --do_lower_case --max_seq_length 40 --learning_rate 1e-05 --loss_type xe --seed 88 --drop_out 0.3 --weight_decay 0.05 --warmup_steps 0 --loss st --batch_size 32 --num_batches 529 --pin_memory --num_workers_per_gpu 0 --comment input_your_comments --output saved_models/cirr_rc2_iccv_release_test --log_by recall_inset_top1_correct_composition

To use pre-trained weights to reproduce results in our ICCV 2021 paper, please see DOWNLOAD.md.

Developing

To develop based on our code, we highly recommend first getting familar with Pytorch Lightning.

You can train models as we have described above, the results will be saved to a folder of your choosing.

To inspect results, we recommend using Tensorboard and load the saved events.out.tfevents file. Alternatively, you can also find all information dumped to a text file log.txt.

Pytorch Lightning automatically saves the latest checkpoint last.ckpt in the same output directory. Additionally, you can also specify a certain validation score name --log_by [...] to monitor, which enables saving of the best checkpoint.

Test-split Evaluation

We do not publish the ground truth for the test split of CIRR. Instead, we host an evaluation server, should you prefer to publish results on the test-split.

To generate .json files and upload to the test server, load a trained checkpoint and enable --testonly.

As an example, compare the following arguments with the training arguments above.

python trainval_oscar.py --dataset cirr --usefeat nlvr-resnet152_w_empty --max_epochs 300 --model CIRPLANT-img --model_type 'bert' --model_name_or_path data/Oscar_pretrained_models/base-vg-labels/ep_107_1192087 --task_name cirr --gpus 1 --img_feature_dim 2054 --max_img_seq_length 1 --model_type bert --do_lower_case --max_seq_length 40 --learning_rate 1e-05 --loss_type xe --seed 88 --drop_out 0.3 --weight_decay 0.05 --warmup_steps 0 --loss st --batch_size 32 --num_batches 529 --pin_memory --num_workers_per_gpu 0 --comment input_your_comments --output saved_models/cirr_rc2_iccv_release_test --log_by recall_inset_top1_correct_composition --check_val_every_n_epoch 1 --testonly --load_from_checkpoint $CKPT_PATH

Two .json files will be saved to the output directory, one for Recall validation, the other for Recall_Subset. Visit our test server and upload it to get results.

Citation

Please consider citing this paper if you use the code:

@article{liu2021cirr,
      title={Image Retrieval on Real-life Images with Pre-trained Vision-and-Language Models}, 
      author={Zheyuan Liu and Cristian Rodriguez-Opazo and Damien Teney and Stephen Gould},
      journal={arXiv preprint arXiv:2108.04024},
      year={2021},
}
Owner
Zheyuan (David) Liu
長い夢見る心はそう 永遠で
Zheyuan (David) Liu
Implementation of the Hybrid Perception Block and Dual-Pruned Self-Attention block from the ITTR paper for Image to Image Translation using Transformers

ITTR - Pytorch Implementation of the Hybrid Perception Block (HPB) and Dual-Pruned Self-Attention (DPSA) block from the ITTR paper for Image to Image

Phil Wang 17 Dec 23, 2022
Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention

Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention April 6, 2021 We extended segment-means to compute landmarks without requiri

Zhanpeng Zeng 322 Jan 01, 2023
Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation

Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation Official Code Repository for the paper "Unsupervised Documen

NLP*CL Laboratory 2 Oct 26, 2021
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. Flair is: A powerful NLP library. Flair allo

flair 12.3k Jan 02, 2023
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Laura 1 Jan 28, 2022
A python gui program to generate reddit text to speech videos from the id of any post.

Reddit text to speech generator A python gui program to generate reddit text to speech videos from the id of any post. Current functionality Generate

Aadvik 17 Dec 19, 2022
Calibre recipe to convert latest issue of Analyse & Kritik into an ebook

Calibre Recipe für "Analyse & Kritik" Dies ist ein "Recipe" für die Konvertierung der aktuellen Ausgabe der Zeitung Analyse & Kritik in ein Ebook. Es

Henning 3 Jan 04, 2022
Word2Wave: a framework for generating short audio samples from a text prompt using WaveGAN and COALA.

Word2Wave is a simple method for text-controlled GAN audio generation. You can either follow the setup instructions below and use the source code and CLI provided in this repo or you can have a play

Ilaria Manco 91 Dec 23, 2022
An A-SOUL Text Generator Based on CPM-Distill.

ASOUL-Generator-Backend 本项目为 https://asoul.infedg.xyz/ 的后端。 模型为基于 CPM-Distill 的 transformers 转化版本 CPM-Generate-distill 训练而成。

infinityedge 46 Dec 11, 2022
Multilingual finetuning of Machine Translation model on low-resource languages. Project for Deep Natural Language Processing course.

Low-resource-Machine-Translation This repository contains the code for the project relative to the course Deep Natural Language Processing. The goal o

Andrea Cavallo 3 Jun 22, 2022
Python SDK for working with Voicegain Speech-to-Text

Voicegain Speech-to-Text Python SDK Python SDK for the Voicegain Speech-to-Text API. This API allows for large vocabulary speech-to-text transcription

Voicegain 3 Dec 14, 2022
XLNet: Generalized Autoregressive Pretraining for Language Understanding

Introduction XLNet is a new unsupervised language representation learning method based on a novel generalized permutation language modeling objective.

Zihang Dai 6k Jan 07, 2023
We have built a Voice based Personal Assistant for people to access files hands free in their device using natural language processing.

Voice Based Personal Assistant We have built a Voice based Personal Assistant for people to access files hands free in their device using natural lang

Rushabh 2 Nov 13, 2021
COVID-19 Related NLP Papers

COVID-19 outbreak has become a global pandemic. NLP researchers are fighting the epidemic in their own way.

xcfeng 28 Oct 30, 2022
Material for GW4SHM workshop, 16/03/2022.

GW4SHM Workshop Wednesday, 16th March 2022 (13:00 – 15:15 GMT): Presented by: Dr. Rhodri Nelson, Imperial College London Project website: https://www.

Devito Codes 1 Mar 16, 2022
Train BPE with fastBPE, and load to Huggingface Tokenizer.

BPEer Train BPE with fastBPE, and load to Huggingface Tokenizer. Description The BPETrainer of Huggingface consumes a lot of memory when I am training

Lizhuo 1 Dec 23, 2021
TEACh is a dataset of human-human interactive dialogues to complete tasks in a simulated household environment.

TEACh is a dataset of human-human interactive dialogues to complete tasks in a simulated household environment.

Alexa 98 Dec 09, 2022
a chinese segment base on crf

Genius Genius是一个开源的python中文分词组件,采用 CRF(Conditional Random Field)条件随机场算法。 Feature 支持python2.x、python3.x以及pypy2.x。 支持简单的pinyin分词 支持用户自定义break 支持用户自定义合并词

duanhongyi 237 Nov 04, 2022
nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

Bernhard Liebl 2 Jun 10, 2022