Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

Overview

CIRPLANT

This repository contains the code and pre-trained models for Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

For details please see our ICCV 2021 paper - Image Retrieval on Real-life Images with Pre-trained Vision-and-Language Models.

Demo image from CIRR data

If you find this repository useful, we would appreciate it if you could give us a star.

You are currently viewing the code & model repository. For more information, see our Project homepage.

Introduction

CIRPLANT is a transformer based model that leverages rich pre-trained vision-and-language (V&L) knowledge for modifying visual features conditioned on natural language. To the best of our knowledge, this is the first attempt in repurposing a V&L pre-trained (VLP) model for composed image retrieval- a task that requires language-conditioned image feature modification.

Our intention is to extend current methods to the open-domain. Together with the release of the CIRR dataset, we hope this work can inspire further research on composed image retrieval

Installation & Dataset Preparation

Check INSTALL.md for installation instructions.

Training

To train the model and reproduce our published results on CIRR:

python trainval_oscar.py --dataset cirr --usefeat nlvr-resnet152_w_empty --max_epochs 300 --model CIRPLANT-img --model_type 'bert' --model_name_or_path data/Oscar_pretrained_models/base-vg-labels/ep_107_1192087 --task_name cirr --gpus 1 --img_feature_dim 2054 --max_img_seq_length 1 --model_type bert --do_lower_case --max_seq_length 40 --learning_rate 1e-05 --loss_type xe --seed 88 --drop_out 0.3 --weight_decay 0.05 --warmup_steps 0 --loss st --batch_size 32 --num_batches 529 --pin_memory --num_workers_per_gpu 0 --comment input_your_comments --output saved_models/cirr_rc2_iccv_release_test --log_by recall_inset_top1_correct_composition

To use pre-trained weights to reproduce results in our ICCV 2021 paper, please see DOWNLOAD.md.

Developing

To develop based on our code, we highly recommend first getting familar with Pytorch Lightning.

You can train models as we have described above, the results will be saved to a folder of your choosing.

To inspect results, we recommend using Tensorboard and load the saved events.out.tfevents file. Alternatively, you can also find all information dumped to a text file log.txt.

Pytorch Lightning automatically saves the latest checkpoint last.ckpt in the same output directory. Additionally, you can also specify a certain validation score name --log_by [...] to monitor, which enables saving of the best checkpoint.

Test-split Evaluation

We do not publish the ground truth for the test split of CIRR. Instead, we host an evaluation server, should you prefer to publish results on the test-split.

To generate .json files and upload to the test server, load a trained checkpoint and enable --testonly.

As an example, compare the following arguments with the training arguments above.

python trainval_oscar.py --dataset cirr --usefeat nlvr-resnet152_w_empty --max_epochs 300 --model CIRPLANT-img --model_type 'bert' --model_name_or_path data/Oscar_pretrained_models/base-vg-labels/ep_107_1192087 --task_name cirr --gpus 1 --img_feature_dim 2054 --max_img_seq_length 1 --model_type bert --do_lower_case --max_seq_length 40 --learning_rate 1e-05 --loss_type xe --seed 88 --drop_out 0.3 --weight_decay 0.05 --warmup_steps 0 --loss st --batch_size 32 --num_batches 529 --pin_memory --num_workers_per_gpu 0 --comment input_your_comments --output saved_models/cirr_rc2_iccv_release_test --log_by recall_inset_top1_correct_composition --check_val_every_n_epoch 1 --testonly --load_from_checkpoint $CKPT_PATH

Two .json files will be saved to the output directory, one for Recall validation, the other for Recall_Subset. Visit our test server and upload it to get results.

Citation

Please consider citing this paper if you use the code:

@article{liu2021cirr,
      title={Image Retrieval on Real-life Images with Pre-trained Vision-and-Language Models}, 
      author={Zheyuan Liu and Cristian Rodriguez-Opazo and Damien Teney and Stephen Gould},
      journal={arXiv preprint arXiv:2108.04024},
      year={2021},
}
Owner
Zheyuan (David) Liu
長い夢見る心はそう 永遠で
Zheyuan (David) Liu
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 Corpora 📃 Corpora Number of documents Size (GB) BNE 201,080,084 570GB Models 🤖 RoBERTa-base BNE: https://huggingface.co

PlanTL-SANIDAD 203 Dec 20, 2022
A Python module made to simplify the usage of Text To Speech and Speech Recognition.

Nav Module The solution for voice related stuff in Python Nav is a Python module which simplifies voice related stuff in Python. Just import the Modul

Snm Logic 1 Dec 20, 2021
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Jan 08, 2023
My implementation of Safaricom Machine Learning Codility test. The code has bugs, logical I guess I made errors and any correction will be appreciated.

Safaricom_Codility Machine Learning 2022 The test entails two questions. Question 1 was on Machine Learning. Question 2 was on SQL I ran out of time.

Lawrence M. 1 Mar 03, 2022
Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks. It takes raw videos/images + text as inputs, and outputs task predictions. ClipB

Jie Lei 雷杰 612 Jan 04, 2023
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5

NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in

Samuel Sharkey 1 Feb 07, 2022
Natural Language Processing Specialization

Natural Language Processing Specialization In this folder, Natural Language Processing Specialization projects and notes can be found. WHAT I LEARNED

Kaan BOKE 3 Oct 06, 2022
Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech

epub2audiobook Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech Input examples qual a pasta do seu

7 Aug 25, 2022
A BERT-based reverse-dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end Quick Start C

Eu-Bin KIM 94 Dec 08, 2022
We have built a Voice based Personal Assistant for people to access files hands free in their device using natural language processing.

Voice Based Personal Assistant We have built a Voice based Personal Assistant for people to access files hands free in their device using natural lang

Rushabh 2 Nov 13, 2021
DAGAN - Dual Attention GANs for Semantic Image Synthesis

Contents Semantic Image Synthesis with DAGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evalu

Hao Tang 104 Oct 08, 2022
Weakly-supervised Text Classification Based on Keyword Graph

Weakly-supervised Text Classification Based on Keyword Graph How to run? Download data Our dataset follows previous works. For long texts, we follow C

Hello_World 20 Dec 29, 2022
This is a simple item2vec implementation using gensim for recbole

recbole-item2vec-model This is a simple item2vec implementation using gensim for recbole( https://recbole.io ) Usage When you want to run experiment f

Yusuke Fukasawa 2 Oct 06, 2022
Training and evaluation codes for the BertGen paper (ACL-IJCNLP 2021)

BERTGEN This repository is the implementation of the paper "BERTGEN: Multi-task Generation through BERT" (https://arxiv.org/abs/2106.03484). The codeb

<a href=[email protected]"> 9 Oct 26, 2022
Tools and data for measuring the popularity & growth of various programming languages.

growth-data Tools and data for measuring the popularity & growth of various programming languages. Install the dependencies $ pip install -r requireme

3 Jan 06, 2022
Automatically search Stack Overflow for the command you want to run

stackshell Automatically search Stack Overflow (and other Stack Exchange sites) for the command you want to ru Use the up and down arrows to change be

circuit10 22 Oct 27, 2021
PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI

data2vec-pytorch PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI (F

Aryan Shekarlaban 105 Jan 04, 2023
Codes to pre-train Japanese T5 models

t5-japanese Codes to pre-train a T5 (Text-to-Text Transfer Transformer) model pre-trained on Japanese web texts. The model is available at https://hug

Megagon Labs 37 Dec 25, 2022
List of GSoC organisations with number of times they have been selected.

Welcome to GSoC Organisation Frequency And Details 👋 List of GSoC organisations with number of times they have been selected, techonologies, topics,

Shivam Kumar Jha 41 Oct 01, 2022